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The following topics will be
discussed In this paper,

An Introduction to Algorithmic I.mm'mation Theory

Its history and some examples

GEORGE MARKOWSKY

OVERVIEW

he goal of this paper is to provide a simple introduction

to Algorithmic Information Theory (AIT) that will high-

light some of the main ideas without presenting too
many details. More technical treatments of these ideas can
be found in References (11, [2], 3] and (4], which are listed at
the end of the paper. The main ideas of Algorithmic Informa-
tion Theory will be presented using English as the underlying
programming language. The presentation illustrates the fact
that the same arguments can be expressed in any other rea-
sonable language and that the main results have a robust unj-
versality across all reasonable languages.

This paper grew out of a short course on AIT that Gregory
Chaitin presented in June 1994, at the University of Maine.
I'helped with the course and observed some of the topics
that proved most difficult for students. I presented a series
of lectures based
on these observa-
tions at the 1995
Summer School on
Algorithmic Infor-
mation Theory held
in Mangalia Roma-
nia. The text of those
lectures, and others
from that workshop,
can be found in The
Journal of Universal
Computer Science.| 8]
All the material pre-
sented here is based
on the work of Gre-
gory Chaitin.
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WHAT I8 AIT?

AlT, of course, stands for Algorithmic Information Theory. The
information part of the name comes from Shannon’s infor-
mation theory, which first proposed measuring the amount
of information. The algorithmic part of the name comes from
the fact that algorithms (programs) are used for measuring
information content.

SOME IMPORTANT PRE-AIT IDEAS

The concem of an Algorithm
A very interesting discussion of this is found in Volume 1 of
Knuth's The Art of Computer Programming. After dismissing
several earlier derivations, Knuth presents what he claims is
the correct derivation. He notes that even as late as 1957, al-
gorithm did not appear in Webster's New World Dictionary.
The closest word to appear in dictionaries of that time
was algorism, which means the process of doing arith-
metic using Arabic numerals, The word algorithm ap-
peared as the result of confusing the word arithmetic
with the name of the Persian mathematician Abu J4far
Mohammed ibn Musa al-Khowérizmi (c. 825). The word
was probably first widely used for Euclid’s GCD algorithm
before it came to have its present meaning of a well-defined
procedure for computing something. The 1971 edition of
The Compact Edition of the Oxford English Dictionary gives
the following definition for algorithm: “erroneous refashion-
ing of algorism.”

The History of Entropy
Nicolas Leonard Sadi Carnot (1796-1832) was an engineer who
was interested in understanding how much work can be pro-
duced by heat engines such as steam engines. He introduced
many important concepts into thermodynamics including
those of reversible and irreversible engines.

Building upon his work, Rudolf Clausjus introduced the
concept of entropy:
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“I propose to name the magnitude S the entropy of the
body from the Greek word ‘n tpomy, a transformation.
have intentionally formed the word entropy so as to be
as similar as possible to the word energy, since both
these quantities, which are to be known by these names,
as so nearly related to each other in their physical sig-
nificance that a certain similarity in their names seemed
to me advantageous...”

Further contributions to the field were made by Kelvin,
Boltzmann, and Gibbs. The last two connected entropy to sta-
tistical mechanics and showed that it can be viewed as a mea-
sure of the randomness of a collection of entities such as mol-
ecules. ‘

The work of Boltzmann and Gibbs lead to the following
expression for entropy: -cZ p logp, where ¢ is some constant
> 0 and the p, are probabilities of various states.

Information Theory

The work of Claude Shannon shows the connection between
the entropy of thermodynamics and the entropy of infor-
mation theory. Many of the ideas of information theory were
in the air when Claude Shannon wrote his two classic pa-
pers on information theory in 1948. Shannon has shown that
it makes sense to measure the information content of
messages and how to transmit messages correctly in the
presence of noise. The importance of this work cannot be
overestimated.

hannon derived the connection between the entropy

of thermodynamics and the information-theoretic

entropy that he used in his theory. It is interesting to
note that information-theoretic entropy is the unique (up to
multiplicative constant) continuous function, F, on prob-
ability vectors (vectors of nonnegative numbers that sum to
1) that satisfies the following three very simple conditions.

* For a given n, F achieves its maximum over all probability
vectors of length nat (1/n,...,1/n).

¢ Extending a probability vector by adding an additional
entry of 0 to its end does not change the value of .

* Let A and B be two probability vectors and C be the prob-
ability vector that represents the probabilities of the joint
events from A and B happening. Then F(C) = F(A) + F, (B),
where F, (B) represents a conditional computation to be
performed using the values of B and the knowledge of
events in A.

For more details consult Khinchin’s book. [6]
The Berry Paradox

In the Principia Mathematica, Russell and Whitehead describe
an interesting paradox that lies at the heart of AIT and pro-

-vides the key insight into many of its results. To start off, first

note that there are only finitely many English phrases not ex-
ceeding a certain length in words. Some of these phrases will
define positive integers unambiguously. Make a list of these
phrases of twenty words or less. (Alternatively, you can also
limit the number of characters.)

This list will define a finite set of integers, so some positive
integers will not be on the list. Let Q be the smallest positive
integer not on the list. Now consider the following phrase: “the
smallest positive integer that cannot be defined in less than
twenty words.” This is a phrase of 13 words!

Undecidability

ilbert was of the opinion that eventually algorithms

would be found to solve all outstanding problems in

mathematics and some of his famous problems pre-
sented at the International Mathematical Congress of 1900
tried to direct research at finding these algorithms. In 1931
Kurt Godel published a paper showing that any system of
mathematics complicated enough to include arithmetic must
contain problems undecidable from the basic axioms in that
system.

In 1937 (a year before he earned his Ph.D.), Turing pub-
lished the paper in which he introduced “Turing machines”
and showed that the Halting Problem, deciding whether a
Turing machine running on a particular input would halt or
not, is undecidable. Turing’s work is of critical importance in
computer science and significantly simplified the demonstra-
tion that there are undecidable problems in formal systems.

Credit for AIT Discoveries
Three people are generally credited with codiscovering
some of the basic ideas of AIT: Chaitin, Kolmogorov, and
Solomonoff. Solomonoff published some definitions before
Chaitin and Kolmogorov. Chaitin has contributed the larg-
est body of work to AIT and continues to extend the field at
the present time. There is a tendency on the part of some
writers to attach Kolmogorov’s name to everything in the
field. This makes little sense and is obviously unfair to other
researchers.

A curious justification for this is stated in Li and Vitdnyi’s
book [7, p. 84]

This partly motivates our choice of associating
Solomonoff’s name with the universal distribution and
Kolmogorov’s name with algorithmic complexity, and,
by extension, with the entire area. (Associating
Kolmogorov’s name with the complexity may also be
an example of the “Matthew Effect” first noted in the
Gospel according to Matthew, 25:29-30, “For to every
one who has more will be given, and he will have in
abundance; but from him who has not, even what he
has will be taken away. And cast the worthless servant
into the outer darkness; there men will weep and gnash
their teeth.”)
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SOME FUNDAMENTAL CONCEPTS OF AIT

Iwillloosely define the algorithmic complexity of a finite string
as the size of the smallest program that generates that par-
ticular character string. More generally, one can define the
complexity of any object as the size of the smallest program
that generates it. These definitions are loose because they
leave out some key details:

* What language are we using?

* What does generate mean?

* How do we measure program size?

* What exactly constitutes a program?
* How do we handle infinite strings?

For best results, a programming language should be used
because of the great precision of programming languages. We
can generally tell what constitutes a legal program in a par-
ticular programming language. Human languages, on the
other hand, are full of ambiguous statements and it is not al-
ways clear whether a legal and unambiguous description has
been given. Nevertheless, since our goal is to describe the main
ideas of AIT we will do so using English as our programming
language. The references indicate where more technical treat-
ments of AIT can be found.

If we use English, our definition of the algorithmic com-
plexity of a finite character string reduces to “the smallest
number of characters that it takes to describe in English
how to generate a particular string.” We count all characters
including blanks and punctuation to come up with a num-
ber. I will use the term program to refer to an English de-
scription of a string. It is important to note that the word
smallest is emphasized in the text above. Many key results
depend on the fact that the complexity is the smallest pos-
sible description.

An important point to stress here, and one to which I will
return, is that the algorithmic complexity of an object depends
very much on the language in which the object is described!
We can make the complexity of any particular object as small
or as large as we choose by picking the appropriate language
or by modifying an existing language.

orexample, AIT is not a traditional English word. We have

added it to English language as an abbreviation for Algo-

rithmic Information Theory. If one of the rules of English
is to automatically expand abbreviations then AIT is a quick
way to generate a much larger string. Similarly, many lan-
guages permit the addition of abbreviations, so you can cre-
ate a new language, consisting of the old language with an
abbreviation, in which the size of the particular string would
be reduced.

This feature is not all that different from other forms of
measurement. For example, it is incorrect to say that the length
of a particular object is 4.5 without specifying the scale. You
will get very different “lengths” depending on whether you use
feet, meters or light years as your basic unit.

The key point here is to make evident the universal fea-
tures of AIT—those that hold independent of the language
used to compute complexity. In general, by choosing the lan-
guage appropriately we can alter the results for some finite
collection of strings, but we cannot alter the results for the
totality of strings.

Roughly speaking, the algorithmic complexity of a finite
string always exists because there are only finitely many En-
glish descriptions having a size less than or equal to a given
number, and because every finite string can be generated by
a program that essentially just outputs the string.

Knowing that the algorithmic complexity of a string exists
and finding it are two different things. There are other sorts of
complexity and even variations of Algorithmic Complexity.
Since these notes are an introduction to AIT, I will just present
one version of complexity.

Itis important to realize that the complexity of most strings
cannot be substantially shorter than the string itself. To make
this statement more precise, let’s assume that English has an
alphabet with Qletters. Q depends on the punctuation marks
that we count, along with other characters such as blanks, tabs,
carriage returns, etc. The results do not depend on the pre-
cise value of Q, so we will present this argument in general.

nce we agree on the value of Q, we note that there are

Q" strings of length n. Suppose that we assume that to

each “program” (description) we associate at most one
string that it produces. It is possible that no string is produced
if the program goes into an infinite loop or suffers from some
ambiguity. Since programs are also strings, it is easy to see
that the number of programs having length <n is bounded
above by

Q+Q+.+ Q' =(Q-1/(Q-1<Q/(Q-1).

Thus, at most, 1/(Q - 1) of all strings of length n can be
expressed by programs that are shorter. Thus, at least (Q - 2)/
(Q-1) of all strings of length n require a program of length at
least n to generate. I will use H(S) to denote the algorithmic
complexity or program-size complexity of S. The preceding dis-
cussion has the following consequence.

Theorem 1: (Arbitrary Complexity Theorem) Given any inte-
ger, N, there are strings with algorithmic complexity greater
than N.

SOME EXAMPLES

Here are some simple examples that will help you to better
understand how AIT works. Let's start with a very simple ex-
ample. Suppose you are given the string “asbdasdferrasdfa.”
One way to describe it in English is to simply say the string is
asbdasdferrasdfa which is only 14 characters longer than the
string we wish to describe. Thus, the English algorithmic com-
plexity of a string cannot exceed its length by more than 14.
Thus, we have our first theorem.
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Theorem 2: (The Upper Bound Theorem) For any string, S,
H(S)<|S|+14.

The Upper Bound Theorem is not quite correct as stated,
because we have glossed over a very important point: how can
we tell when strings begin and end? At first glance, one might
think that it’s possible to use some special character to mark
the end of the string, but since this character is part of the
alphabet we must also provide a mechanism for including this
character as part of a string if we want to. There are basically
two different approaches to this problem. One is to use an
escape character of some sort that permits you to indicate pre-
cisely which characters are part of a string and which are not.
The other approach is to use a length indicator of some sort.
These approaches are discussed in the references and indi-
cate some of the technical complexities that must be dealt with
if one wants to get the theory completely correct. Depending
on the approach taken, the correct form of the Upper Bound
Theorem might read something like:

CH©®)<25|+C
or
H(S) <|S| + log(|S) + C

where the constants may be more precisely specified. We do
not need to know the various constants precisely. For our pur-
poses, it is enough to state the Upper Bound Theorem as “the
algorithmic complexity of a string cannot be significantly
larger than the length of the string.”

One last complication needs to be mentioned: long strings
are generally not written on a single line, but require carriage
returns and line feeds to break the string into lines. It seems
reasonable that we should count these extra characters. If we
do, this will modify the Upper Bound Theorem even more,
but the large picture will remain the same.

For other languages, the Upper Bound Theorem remains
essentially the same. The constants will be different, but the
implications are language independent.

For many strings, S, H(S) is significantly smaller than the
bound provided by the Upper Bound Theorem. For example,
consider the following string:

aa adaaqaaaaaaaqaaaaaa aaaaa

We can describe this string as 50 a’s which takes 6 charac-
ters instead of the 64 characters suggested by the Upper Bound
Theorem. A little reflection shows how it is possible to gener-
ate extremely large strings using relatively short descriptions.
For example, consider the following description.

Doubling a string S means replacingS by SS, whereSS means
writing two copies of S side by side. Produce a string by dou-
bling S 1000 times starting with S =“a.”

The preceding description will produce a string of length

roughty 10°*'. This number is larger than the estimated num-
ber of atoms in the universe, so it would be quite difficult to
write it out using standard numerical notation.

THE UNCOMPUTABILITY OF ALGORITHMIC COMPLEXITY

1 hope that the preceding discussion has given you some in-

sight into actually measuring H for various strings. By now,

you are probably eager to start computing some values of H.
Unfortunately, I will now prove that this is more difficult

than might appear. It turns out that it is impossible to com-

pute H for more than a finite number of strings!

n argument based on the Berry Paradox shows quite con-

vincingly that H is not computable for character strings.

The argument is roughly the following. Assume that we
have a fixed English description that explains how to correctly
compute the complexity of strings. We can use this descrip-
tion to derive a description for computing of complexity
greater than the size of the description, which is impossible.
The details are given in the proof of the following theorem.

Theorem 3: (Uncomputability of H Theorem) No English de-
scription can correctly compute H for all finite strings.

Proof: This proof is by contradiction. Assume that we have an
English description that computes H and consider the follow-
ing English description.

1. Assign the empty string“” to S.

2. Generate the next string following S in size-alphabetical
order and assign its value to S.

3. Compute the complexity of S.

. If the complexity of S is < N then go to Step 2.

5. Display S.

'~

Before explaining the steps in detail, it is worth answering
the following question: what does this description produce?
Clearly this procedure will continue looping until a string of
complexity >N is produced. Note that so far [ have not speci-
fied N. This was a deliberate omission since NV has to be large
enough for our purposes. The subsequent discussion will give
you insight into the size of N. Let’s review each step and most
importantly its size!

The first step is fairly clear. Let’s denote its size by C. C,
depends on whether we count carriage returns and line feeds
and how much overhead we wish to assign for the ordered list
structure.

I want to clarify the nature of the second step. In particu-
lar, given two strings S and T, we will say that S < T in size-
alphabetical order if either the length of S is strictly less
than the length of T or S and T have the same length but
S precedes T alphabetically. You need to decide how much
explanation is required by the second step. Let's denote the
size of this step by C,.

© 1997 John Wiley & Sons, Inc.
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The third step is the one that we assume exists. In particu-
lar, we can denote the size of this step by C,.Icannotsay much
more about this step since I want to show that no such de-
scription is possible. For the time being, we assume that this
step is possible.

Step 4 seems simple, but measuring its size involves a
subtle point. Since we did not specify N, we cannot have a
fixed size for this step. In general, specifying N requires that
we use logN characters to specify the number in the usual
decimal notation. Thus, the size of this step is C, +logN.

Step 5 is fairly simple and we assign it size C. ,

If we add up the sizes of the various steps, we see that the
description above requires the following number of charac-
ters to specify:

C+C+C+C+logN+ G.

However, assuming that we know how to compute correctly
H(S), we are guaranteed to produce a string of complexity
greater than N. Note that the definition of complexity implies
that a string of complexity greater than N can be produced
only by an English description of length greater than N Thus,
we get the following inequality

C+C+C+ C+logN+ C>N.

ote that only finitely many N can satisfy the above in-

equality, since by choosing N sufficiently large we can

make N larger than the left side of the inequality. Since
N can be chosen as desired, we choose a large enough N to
violate the inequality and produce a contradiction. The fact
that we have arrived at a contradiction, means that it is not
possible to construct Step 3 (all the other steps have been con-
structed), which is what we wanted to prove!

PROPERTIES OF #

As we have seen, H is not computable. Nevertheless we can
derive some of its properties. The following is an example of
this.

Theorem 4: (Concatenation Theorem)
H(s, +s,) < H(s)+ H(s)+C

where + between strings indicates concatenation, which is the
creation of a new string by joining the beginning of the sec-
ond string to the end of the first.

Proof: Consider the following description: simply explain
how to concatenate two strings and then give the descrip-
tions of the two strings. The size of this description is the
sum of the descriptions for the individual strings together
with whatever it takes to describe how to concatenate two
strings into one.

THE HACKER'S PROBLEM

Closely related to the problem of computing H is the Hacker's
Problem: how can you show that a given English description
is the shortest English description that can generate a par-
ticular string? Gregory Chaitin refers to such shortest descrip-
tions as elegant descriptions.

To minimize problems, let’s accept the following conven-
tion. The empty description, i.e., the description that has no
words in it, produces the empty string. Clearly, the empty de-
scription is the elegant description that produces the empty
string. The empty string can also be produced by any descrip-
tion that does not output any characters.

I some cases it is useful to have descriptions that produce

an infinite sequence of characters. For example, the deci-

mat description of the fraction 1/3 consists of an infinite
sequence of 3's. Nevertheless, dealing with infinite stringsisa
tricky business since most of them cannot be generated by
any language. To simplify our discussion, the only descrip-
tions that will be considered elegant are those that eventually
produce a finite string and halt.

I base the name, The Hacker’s Problem, on the book Hack-
ers by Stephen Levy which details how many hackers were on
an endless quest to find the shortest program to accomplish
some task. The hackers were never able to prove that some
program was the shortest. We will now see why this is no acci-
dent. Gregory Chaitin participated in such a quest when he
was learning programming while in high school.

In view of the uncomputability of H, you might suspect
that the Hacker’s Problem is also not solvable. We will now see
how to prove this using the Berry Paradox.

Usually, when people talk about proving something they
imply that one must use an axiomatic system of some type.
The same object can be achieved by thinking of an axiomatic
system as a computer program that can correctly decide a
certain question. For our purposes, we can think of an axiom-
atic system as an English description.

The theorem below shows that it is impossible for any de-
scription to decide correctly for infinitely many descriptions
that they are elegant descriptions. Furthermore, the size of
the description being used to decide on the elegance of other
descriptions bounds the complexity of the descriptions for
which minimality can be demonstrated. Thus, the checking
description cannot correctly decide whether descriptions that
are significantly larger than itself are elegant!

Finally, I should note that an English description can be
thought of as a character string. The structure of a descrip-
tion is indicated by special characters such as carriage returns
and line feeds. In fact, word processing documents may be
thought of as long character strings.

Theorem 5: (Hacker's Problem is Unsolvable Theorem) The
Hacker’s Problem cannot be solved in general, i.e., there are
only finitely many provably elegant programs.

18
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Proof: This proof proceeds by contradiction. Suppose that
there was an English description that could correctly deter-
mine whether any other English description was elegant. Con-
sider the following description.

1. Assign the empty string“” to S.

2. Generate the next string following S in size-alphabetical
order and assign its value to S.

3. Determine if the string Sis a correct English description. If
not, go to Step 2.

4. Ifthe size of Sis < N, then go to Step 2.

If the description is not elegant, then go to Step 2.

6. Generate the string that is defined by the expression.

@

Before I describe the stages in more detail, consider what
the output of this description must be. If we choose N greater
than 0, then it is clear that the description above must pro-
duce a string of complexity >N. As in the proof of Theorem 3,
I will derive a contradiction by picking N large enough.

Steps 1 and 2 are the same as considered in the proof of
the uncomputability of H. As before, we can give their sizes as
C,and C,

Step 3 takes some explanation. The idea here is to deter-
mine a string generated in Step 2 is a legal English descrip-
tion. You might consider this to be equivalent to providing a
book of grammar. This step is a bit clearer when dealing with
a computer language, since just about every language has a
compiler associated with it. A compiler is a program that tells
whether a computer program is actually a correct program in
the language in which it purportedly is written. Let’s use C,to
represent the size of this step. C, can be quite large, but the
important thing is that it is a constant.

As in proving the uncomputability of H, the size of Step 4
is C, +logN.

We are assuming that Step 5 is possible, and that it requires
a description of size C,. We are also using the convention that
descriptions which do not halt are not elegant, so if a descrip-
tion is declared elegant it will halt and produce an output
string.

Finally, Step 6 has some finite size C,.

Since the final output of this description is a string of
complexity >N, it follows that the size of this description must
also be >N . This gives the following inequality

C+C+C+C+logN+C+C >N,
which is impossible.
We can draw some additional information from this argu-
ment. In particular, we have that

C,>N-(C+C+C+ C,+logh+C).

Recall that C, was the size of the elegance-recognition descrip-
tion. The conclusion here is that any description that can prove

that a description of size N is elegant, essentially must have
size at least N itself. Thus, descriptions cannot prove the el-
egance of descriptions that are substantially larger than they
are themselves.

THE HALTING PROBLEM
The Halting Problem was mentioned earlier in connection
with Turing machines. You can formulate a variant of the Halt-
ing Problem in any computational scheme that you choose.
In particular, the Halting Problem for English descriptions is
deciding whether a particular English description of a string
produces a finite string or whether it runs forever. As with most
general questions about programs (descriptions), the Halting
Problem is not solvable. In practical terms, our inability to
solve the Halting Problem and related problems means that
we cannot come up with foolproof tests for viruses or bugs.

Many people are surprised to learn that the Halting Prob-
lem cannot be solved. It seems difficult to accept that it is not
obvious when a procedure will not halt.

I will now show how our inability to compute H(S) or to
solve the Hacker’s Problem implies that the Haiting Problem
is notsolvable. In both cases, the argument is almost the same.

irst, let’s show that if the Halting Problem is solvable by a
description, we could construct a description that could
compute H(S). Since we know that the latter is impos-
sible, it follows that solving the Halting Problem is also im-
possible. We summarize this result in the following Theorem.

Theorem 6: (Computing H from the Halting Problem Theo-
rem) If there were a description that could tell whether any
description halted or not, then there would be a description
that could compute H.

Proof: As before, we assume that there is a description that
solves the Halting Problem. Now consider the following de-
scription which will compute H(S) for any nonempty string S.
For the empty string, we can use some convention such as
assuming that the empty description produces the empty
string.

1. Record S.

2. Assign the empty string“” to T.

3. Generate the next string following T in size-alphabetical
order and assign its value to .

4. Determine if the string Tis a correct English description. If
not, go to Step 3.

5. Determine whether T halts. If not, go to Step 3.

6. Carry out the instructions in the description T to produce
astring U.

7. If U=, then the length of Tis H(S). If U# S, go to Step 3.

The above description computes H(S) because it goes
through the descriptions in size order. Thus, the first time that
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it finds a description that produces S, we are sure that we have
found an elegant description that produces S, and hence the
length of this description is the complexity of S. Note that be-
ing able to solve the Halting Problem keeps us from wasting
time by trying to compute with descriptions that never halt.

Theorem 7: (Unsolvability of the Halting Problem Theorem)
The Halting Problem is unsolvable.

Proof: From Theorem 6, it follows that if the halting problem
were solvable, we could compute H(S) for all S. However, we
know that H(S) cannot be computed, so therefore the Halting
Problem cannot be solved.

e could also prove that the Halting Problem is unsolv-
able by using the Hacker’s Problem as our basic un-
solvable problem. We would first show that being able
to solve the Halting Problem would enable us to solve the
Hacker’s Problem and then we would conclude, as in Theo-
rem 7, that since the Hacker’s Problem is unsolvable, so is the
Halting Problem. The argument that being able to solve the
Halting Problem enables us to solve the Hacker’s Problem is
given below.

Theorem 8: (Solving the Hacker’s Problem from the Halting
Problem Theorem). If we could solve the Halting Problem, we
could solve the Hacker’s Problem.

Proof: As in the proof of Theorem 6, we assume that we have a
description that permits us to decide whether an English de-
scription halts or not. Now consider the following description
which will decide whether a description that halts is elegant.
Let’s assume that the description that we want to analyze is
given by the string U.

1. If Udoes not halt, stop the process and declare it to be not
elegant. '

2. Compute the string described by U and store it in S.

3. Assign the empty string“” to T.

4. Generate the next string following T in size-alphabetical
order and assign its value to T

5. Ifthelength of Tis 2 the length of U, output the result that
U'is elegant and stop.

6. Determine if the string T'is a correct English description. If
not, go to Step 4.

7. Determine whether T halts. If not, go to Step 4.

Carry out the instructions in T to produce a string W.

9. If W=, then output the statement that U is not elegant
and stop. Otherwise, go to Step 4.

®

The previous argument can be summed up as follows. First,
decide whether the description halts or not. If it does not halit,
itis not elegant using our conventions. Otherwise, go through
all possible shorter English descriptions. Use our hypothesized

ability to solve the Halting Problem to skip over the English
descriptions that do not halt and carry out the ones that halt.
If any of these shorter descriptions produce the same string
as the description we are given, then that description is not
elegant. Otherwise, it is elegant.

Chaitin et al. [5] contains two proofs that show that being
able to compute program-size complexity would confer the
ability to solve the Halting Problem.

CHAITIN'S Q AND Q-

Gregory Chaitin has found an interesting way to combine his
incompleteness results into one neat number which he calls
Omega (Q). The bits of Q are truly unknowable. To correctly
define Q we need to introduce quite a bit of machinery. Since
I want to keep this exposition simple, I will define a number
Q- which is much easier to define and which captures much
of the flavor of Q. For details on defining Q, see [1, 4, 8}.

We have already described how descriptions can be
thought of as a single string if we include special characters
such as carriage returns and line feeds in our alphabet. We
have already discussed how to order strings in size-alphabeti-
cal order. Now imagine that all descriptions are ordered in size-
alphabetical order and written one after the other in a list as
shown below.

Description 1

Description 2

Description 3

Imagine further that each description is associated with
the digit 0 if it does not halt and the digit 1 if it halts. In par-
ticular, we might have the following diagram.

Oorl | Descriptionl

Oorl | Description2

Oor1l | Description 3

Reading the first column of the preceding table we can
make a decimal number that looks like .d,d,d,... where each
d.is 0 or 1 depending on whether the ith description halts or
not. Let’s call this number Q--. Q - has many of the properties
of Q, but is not as densely packed. It avoids some of the tech-
nical difficulties that arise when Q is defined. For more de-
tails on defining Q, see {1-5, 8]. Chaitin calls Q the Halting

Probability.

ince the definition of Q- is bound up with knowing

which programs halt it should not be surprising to learn

that Q— is very uncomputable. It is clear that Q- exists
and is a number between 0 and 1/9=.11111....

COMPLEXITY
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If you could know the digits of Q—~you would know alot! In
particular, if you knew a particular bit of Q™ you could tell
whether the corresponding program halted or not. Q would
also give you this information, but since it is a compressed
form of Q it is more involved to figure out whether a particu-
lar program halts using its digits.

he above observation permits us to show that Q- is not

computable in the sense that there is no description that

will generate the digits of Q- sequentially. So far we have
concentrated on descriptions that produce a finite string and
halt. It also makes sense to envision a description that never
halts, but continues to output an infinite sequence of digits.
For example, one description of the number 1/3 is .3333...,
which might be given by the following description:

“»

1. Write down “.
2. Write a “3” at the end of the current string.
3. Repeat Step 2.

It is clear that every rational number has a description like
the preceding one. Let’s call every number that has such a
description computable. Many irrational numbers such as V2,
7, and e are computable since we can set up descriptions that
would generate all the digits of the number in sequence. We
give one important property of Q~in Theorem 9.

Theorem 9: (The Uncomputability of Q--Theorem) Q—is not
a computable real number. In particular, Q ~is not a rational
number.

Proof: Assume the contrary. In other words, assume that there
is a description which produces the digits of Qin sequence.
I will now show that if this were possible, we could solve the
Halting Problem. The process for solving the Halting Problem
if Q—were computable is the following:

1. Given a description, compute its position in the list of de-
scriptions;

2. Generate the digits of Q until you get to the digit corre-
sponding to the given description;

3. If the digit is 1, output that the description halts. If it is 0,
output that the description does not halt.

The first step in the description consists of running through
all possible sequences in size-alphabetical order and keeping
only those that are valid English descriptions until you finally
get the description that you want. This is not a very speedy
procedure, but it is specified clearly and can, in principle, be
carried out.

Theorem 7 shows that the Halting Problem cannot be
solved, so it would follow that Q- is not computable.

There are a variety of stronger statements that we can make
about Q. In particular, we can show that the algorithmic com-
plexity of the first N digits of ~ is roughly logN.

Theorem 10: (Complexity of &~ Theorem). If English is repre-
sented using an alphabet of Q(> 2) letters, then the string com-
posed of the first Q™! digits of Q- has algorithmic complexity
at least N- C, where Cis some constant.

Proof: We use Q to denote the number of different characters
in English to permit this proof to apply to other languages and
to permit different people to select different character sets for
English.

There is 1 0-letter English description, at most Q 1-let-
ter English descriptions, at most Q? 2-letter English de-
scriptions, etc. Thus, all English descriptions of length
Norless come within the first 1 + Q+ Q* +...+ Q¥ < Q™!
positions on the list of descriptions. If we know the first
QM digits of Q@ we know which descriptions of length
N or less halt. Now we can carry out all steps in all the
English descriptions of length N or less that halt and
find all strings that have complexity N or less. We sim-
ply generate a string that is not on the list of generated
strings to get a string of complexity greater than N. Since
describing this process takes C characters and we cre-
ated a string of complexity >N, it follows that the com-
plexity of the digits of Q- used here must exceed N- C.

PROPERTIES OF Q

In this section I want to briefly describe some of the proper-
ties of Q. Like Q -, Q is uncomputable. Since Q is a compressed
version of Q, the complexity of its finite prefixes is substan-
tially higher. The complexity of the first N digits of Q is essen-
tially N.

urthermore, Q is truly random when represented in any

base. This means that its sequence of digits will pass any

statistical test that can be devised. I will not go into de-
tail, but this implies, among other things, that every digit ap-
pears essentially the same proportion of the time as any other
digit. Similarly, all possible pairs of digits, triples of digits, etc.,
appear with the expected frequency.

This last observation leads to the concept of a Chaitin-ran-
dom string. A finite string is Chaitin-random when its com-
plexity is roughly equal to its length. An infinite string is
Chaitin-random if all of its finite prefixes are Chaitin-random.
It can be shown that Chaitin-random infinite strings are ex-
actly those that pass all statistical tests.

It should be noted that most computer programming lan-
guages offer pseudorandom number generators. Since these
pseudorandom number generating routines are generally
short, it follows that the sequences they generate are not very
complex, and consequently the sequences they produce are
not Chaitin-random. As a consequence, it follows that no cur-
rent pseudorandom number generator will pass all statistical
tests! For some modeling applications, this might have seri-
ous repercussions.

© 1997 John Wiley & Sons, Inc.
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IMPLICATIONS OF AIT

There are several practical consequences of AIT that I would
like to highlight briefly. First and foremost is the observation
that in some sense, logic does not produce more than you put
in. Results such as the argument given following Theorem 5
can be extended to show that axiom systems cannot prove
consequences that are “significantly more complicated” than
the axiom system.

Such results are of interest in mathematics, but they apply
to “practical” axiom systems as well. In particular, legal sys-
tems and economic systems can be thought of as axiomatic
systems. If one believes that there is no a priori limit on the
complexity of possible behavior in a legal or economic sys-
tem it would appear that no system of laws or economic doc-
trines are likely to capture and control the behavior of the sys-
tems.

Because of the limitations of logical systems, the explora-
tion of which propelled Gregory Chaitin into this field, it ap-
pears that there is always the need for searching and discov-
ery in mathematics and other domains of inquiry. Thus, the
human mind will always have frontiers to explore.
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