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Abstract: Various authors {especially Scott, Egli. and Constable) have introduced concepts of “'basis” for various classes of partially
ordered sets (posets). This paper studies a basis concept directly analogous to the concept of a basis for a vector space. The new basis
concept includes that of Egli and Constable as a special case, and one of their theorems is a corollary of our results. This paper also
summarizes some previously reported but little known resuits of wide utility. For example, if every linearly ordered subset (chain) ina
poset has a least upper bound (supremum), so does every directed subset.

Given posets P and Q. it is often useful to construct maps g:P — ( that are chain-continuous: supremums of nonempty chains are
preserved. Chain-continuity is analogous to topological continuity and is generally much more difficult to verify than isoronicity: the
preservation of the order relation. This paper introduces the concept of an exrension basis: a subset B of P such that any isotone f: B—()
has a unique chain-continuous extension g:P—>Q. Two characterizations of the chain-complete posets that have extension bases are
obtained. These results are then applied to the problem of constructing an extension basis for the poset [P — Q] of chain-continuous
maps from P to Q. given extension bases for P and Q. This is not always possible. but it becomes possible when a mild (and indepen-

dently motivated) restriction is imposed on either P or Q. A lattice structure is not needed.

1. Introduction

Scott [1] proposed that lattice theory should play a
fundamental role in the theory of computing. Various
aspects of lattice theory with computer science motiva-
tions have been studied by many authors, among them
Goguen. Thatcher, Wagner. and Wright [2, 3]. Markow-
sky [4, 5], Plotkin [6], and Scott [7, 8]. Space does not
permit a full survey of the computer science applications
of lattice theory. The diversity of applications is illus-
trated by the work of Cadiou and Levy [9], Hitchcock
and Park [10]. Lewis and Rosen [11], Rosen [12]. and
Vuillemin [13]. Further references can be found in the
works cited, especially [2].

Much of the applied lattice theory in computer science
does not use lattices! Where Scott would recommend
complete lattices [1] or continuous lattices [7], a more
general class of mathematical structures has been used.
Following [4. 5], we call members of this class chain-
complete posets. This class is used in [11, 12]. The
slightly larger class of w-chain-complete posets is used
in {9, 13]. Definitions are in Section 2.

Chain-complete posets have numerous technical ad-
vantages over complete lattices for computing applica-
tions. Certain universal constructions are possible with
chain-complete posets but impossible with complete
lattices [5]. One conjectured disadvantage is well known
in the folklore of this subject: if P, Q are chain-complete
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posets with “‘effectively given bases.” then the poset of
continuous maps [P — Q] may not have an effectively
given basis. Clearly, the truth of this conjecture de-
pends on the precise definition chosen for the basis con-
cept sketched in a lattice oriented manner by Scott
[1. Sec. 4]. One such definition is that of ‘“recursive
bases” proposed by Egli and Constable [ 14, Sec. 11.2]
who show that [P — Q] does have a recursive basis
whenever P and Q have recursive bases. Expressed in
terms of different definitions, Vuillemin’s Lemma 2
[15, Chap. 111] is equivalent to this result. In Section 5
of this paper. we derive this result as a special case of
more general theorems dealing with separate concepts
of basis and of recursive listability that have indepen-
dent mathematical motivations.

Section 2 begins with basic definitions and facts about
chain-complete and w-chain-complete posets. We in-
troduce a concept of compactness inspired by lattice
theory and a universal construction inspired by Theorem
4 of [15]. The basis completion P of a poset P is a chain-
complete poset such that isotone maps from P to Q cor-
respond to chain-continuous maps from P to Q.

Section 3 defines an extension basis for P to be a subset
B of P such that any isotone f:B — Q has a unique chain-
continuous extension g:P — Q. Theorem 3.2 shows that
B is an extension basis for P iff P is isomorphic to B in
a certain natural way. Theorem 3.3 shows that P has
an extension basis iff every member x of P is the supre-
mum of a directed set B, consisting of all compact ¢ with
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¢ < x. This characterization is helpful in relating exten-
sion bases to the narrower basis concepts studied by
Egli and Constable [14] and by Vuillemin [15].

Section 4 deals with the poset [P — Q] of chain-
continuous maps from P to Q. Given extension bases
for P and Q, it need not be possible to construct an ex-
tension basis for [P — Q]. Suppose, however, that either
P or Q has bounded joins: every finite subset with an
upper bound has a supremum. Theorem 4.5 shows that
then [P — Q] does have an extension basis. The con-
struction generalizes the one used in [14].

Section S defines a recursive listing for a subset B of P
to be a map from the nonnegative integers onto B with
appropriate decidability properties. A chain-complete
poset with an extension basis B and a recursive listing
for B is recursively based; this is our formalization of
Scott’s “effectively given basis” [1, Sec. 4] when chain-
complete posets that need not be lattices are considered.
Theorem 5.3 shows that [P — Q] is recursively based
whenever P, O are recursively based and Q has bounded
joins. Theorem 5.6 suggests that stronger results would
require the use of oracles. Corollary 5.8 relates this work
to [ 14, 15].

Various common notations from lattice-theoretic
computer science are used here: [P — Q], L, if - - - then
---else- -+, and so on. In general this paper is consistent
with the notation and terminology of standard works
on lattice theory [16, 17, 18], with a few clearly moti-
vated departures like the use of 1. To avoid superfluous
parentheses, the value of a function f at an argument x
is just fx rather than f(x). The image set {fx|xeC} is
just fC rather than f(C) or f[C].

2. Chain-complete posets and compactness
A poset is a nonempty set P together with a partial order
< on P: the relation < must be reflexive, antisymmetric,
and transitive. An upper bound for S C P is any x in P
such that @ < x for all a in §. A least upper bound or
supremum for § C P is any upper bound x for § such that
x =< y for all upper bounds y. In general, S may not have
upper bounds and may not have a supremum even if it
has upper bounds. The supremum of §, if any, is denoted
sup S.

For ease of reference we repeat some definitions
from [4].

Definition 2.1 Let P be a poset and § C P. Then Sis a
chain iff, for all a, b in §, either a = b or b= a. On the
other hand, S is directed iff every finite subset of § has
an upper bound in S. The poset P is (w-) chain-complete
iff every (countable) chain in P has a supremum.

The empty set J is a chain but is not a directed set.
Nonempty chains are directed. If P is chain-complete,
then sup & is a least element and is denoted L. It is easy
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to construct posets that are w-chain-complete but not
chain-complete. Chain-completeness is more convenient
than w-chain-completeness and seems to entail no sig-
nificant loss of generality. The w-chain-complete posets
that have actually arisen in computer science are also
chain-complete, and countability has never been ex-
ploited in a completeness verification.

Definition 2.2 Let P and Q be posets and f:P — Q be a
map. Then fis isotone iff, for all x, y in P,

x =<y implies fx = fv. (n

The map fis (w-) chain-continuous iff, for each nonempty
(countable) chain C with a supremum in P, the image
set fC C Q has a supremum in Q and

£ (sup,C) = sup, (fC). (2)

Isotone maps have sometimes been called ‘‘monotone”
or “monotonic.” Chain-continuous maps have sometimes
been called “‘continuous.” The qualifier “chain” is re-
tained here, but the following lemma shows that it could
be omitted in the future without serious ambiguity.

Lemma 2.3 Any (countable) directed subset of a (@-)
chain-complete poset has a supremum. Moreover, let P
and Q be (w-)chain-complete posets, and let f:P — Q be
(w-)chain-continuous. Then, for every (countable)
directed D C P,

f(sup,D) = sup,(fD). (3)

Proof See Corollary 2 and Corollary 3 in [4] and note
that countability can be imposed throughout. [J

Theorem 1 in [4] implies Iwamura’s Lemma [19], a
very useful fact about directed sets. We state the lemma
here for ease of reference.

Lemma 2.4 Let the subsets of a poset P be partially
ofdered by set inclusion. Any infinite directed D C P is
the union of a nonempty chain % of directed sets that have
cardinalities less than that of D. OJ

Definition 2.5 A member x of a poset P is (w-) chain-
irreducible iff, for every nonempty (countable) chain
CCP,

x = sup C implies x € C. (1)

It is (w-) chain-compact iff, for every nonempty (count-
able) chain C C P,

x = sup C implies (YEC)(x = y). (2)

Note that (e-)chain-compactness implies (w-)chain-
irreducibility. The converse fails, as can be seen in
Example 3.4.
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Lemma 2.6 Let x be a member of a (w-)chain-complete
poset P. and let D be a (countable) directed subset. If
x 18 (w-) chain-irreducible, then

x=sup D implies x € D. (1
If xis (w-)chain-compact, then
x = sup D implies (Iy€D) (x = v). (2)

Proof We use induction on the cardinality of D. For
finite D, (1) and (2) are easily checked. Now suppose
D is infinite and (1), (2) hold for all directed sets of
smaller cardinality. Let & be a chain of such sets from
Lemma 2.4 with

D=1\J 4,

Ae¢

so that each 4 has a supremum by Lemma 2.3 and
sup D = sup {sup A|A€¥}.

Now (1), (2) for D follow from (1), (2) for each 4 in ¢
and the fact that {sup 4|4€%} is a nonempty chain. [J

If P is a complete lattice, then the above lemma may
be used to show that chain-compactness agrees with
the usual notion of compactness in lattice theory [16,
p. 168 17, p. 13 18, p. 93]. We therefore omit the
qualifier “‘chain.” Compact elements have sometimes
been called “finite” or *‘isolated.”

The following theorem can be derived from Theorem
4 of [5], but a direct proof is more convenient here,

Theorem 2.7 Let P be a poset with a least element L.
There is a chain-complete poset P (called the basis com-
pletion of P) and a map i:P — P (called the natural em-
bedding) with the following properties. First, for any
chain-complete poset Q and isotone map f:P — Q, there
is a unique g:P — Q such that

g is continuous and gei = f. (1)
Second, all x, y in P have
x=yin Piff ix=< iy in P. (2)

Third. for any ¢ in P, the following conditions are equiv-
alent:

& is chain-irreducible; (3)
¢ is compact; (4
& = ix for some x in P. (5)

Fourth, for any ¢ in P, the set

.= {ialaEP and ia = £} is directed (6)
and has
£=supJ,. (7)
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Proof Let P be the set of all directed D C P such that
x= yand v € D imply x € D. Partially order P by set in-
clusion. Then P is chain-complete, and the supremum of
a directed set is just its union as a family of sets. Define
i by

ix={d€EPlu = x}

to derive (2) immediately. Now consider J, in (6). If
ia and ib are in Je then g and b are in ¢ C P and so some
cin ¢ has ¢ = ¢ and b = ¢. Therefore ic in J hasia = ic
and ib = ic. This proves (6). For (7). note that
e=Jia=\J ia= sup J,.
uEE quJg h

We prove the extension property. Given Q and f, note
that fD for any DEP is directed in Q. By Lemma 2.3 for
directed subsets of Q, the map g:P — Q with

gD = sup, fD

is well defined. It is easy to check that g satisfies (1).
If /1 does also, then

hD = h(suppJ,) = supQ(hJD)
= sup, {(hei)x|x€D}

= sup, fD = gD.

We prove that (3) through (5) are equivalent. Clearly
(4) implies (3). To show that (35) implies (4), suppose
(5) and consider any nonempty chain ¢ C P with ¢ <
sup . For £ = ix some A4 in € has x€A and hence £ = 4.
To show that (3) implies (5), suppose (3) and apply
Lemma 2.6(1) to (6) and (7). J

To derive the analogous result for only w-completeness
and w-continuity by the same argument, we would need
to add the hypothesis that P is countable. For compari-
sons with works such as [ 14] that explicitly assume only
w-completeness, it is helpful to know that w-completeness
implies completeness under some frequently occurring
conditions.

Lemma 2.8 Let P be an w-chain-complete poset and
B C P be countable. Suppose that for each x€P, B is
directed and x = sup B, where B, = {bEB|b = x}. Then
P is chain-complete.

Proof For any chain C C P, welet 4 ={_. B_.lItiseasy
to see that A is directed. By Lemma 2.3 and countability
of 4 C B, A has a supremum. Clearly, sup A =sup C. [}

Corollary 2.9 Let P be an w-chain-complete poset and
B C P be countable. Suppose that each member of B is
w-compact and each x in P has x = sup E_ for some
directed E_ C B. Then P is chain-complete.

ProofLet B, be as above. Clearly x=sup £, = sup B, =
x. We claim that B _ is directed. Let a4, bEB . Because q.
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b= sup E, there exista'. b'€EE, suchthata<a'.b=Db".
However, E, is directed. Thus there exists ¢c€E, such
that «’. b’ = c¢. Because E, C B,, ¢EB, and B, is di-
rected. O

xr’

3. Extension bases

An extension basis lets us obtain continuous maps from
isotone maps. Our definition is a direct analog of the
following characterization of a basis for a vector space.
A subset B of a vector space V is a basis iff, for every
vector space W and map f:B — W, there is a unique
linear extension g:V — W.

Definition 3.1 A subset B of a chain-complete poset P
is an extension basis iff, for every chain-complete poset
Q and isotone map f:B — Q, there is a unique chain-
continuous extension g:P — Q of f.

Every finite poset with a least element has itself as
extension basis. The following two theorems characterize
the chain-complete posets that have extension bases.

Theorem 3.2 Let P be a chain-complete poset and B C P.
Then B is an extension basis iff there is an isomorphism
h:P — B that extends the natural embedding i:B — B.

Proof Let i:B — B be the natural embedding in Theorem
2.7. and let j:B — P be the inclusion map from B into P.
By Theorem 2.7(1) there is a unique 2:B — P such that

g is continuous and gei =j. (1)

Now suppose B is an extension basis, so that there is
also a unique f:P — B such that

fis continuous and foj = i. (2)

By (1) and (2), (gof):P — P with (g°f) continuous and
(gof)ej = j. By uniqueness in Definition 3.1 with j in the
role of f there, (gof) is the identity map. Similarly, by
uniqueness in Theorem 2.7(1) with i in the role of fthere,
(fog):B — B is the identity map. Therefore P is isomor-
phic to B.

Now suppose h:P — B is an isomorphism that extends
i. Given isotone f:B — (, there is a unique 2:B— Qsuch
that g is continuous and gei = f. Then g = g/ is a con-
tinuous extension of f. Uniqueness follows from unique-
ness of g. OJ

Theorem 3.3 Let P be a chain-complete poset, and let
B be the set of all compact members of P. Then P has
an extension basis iff, for each x in P, the set

B, = {bEB|b = x} is directed (1)
and has
x=sup B,. (2)

In that case any extension basis B’ has

MARCH 1976

B' = B = {¢EP|c is chain-irreducible}. (3}

Proof Suppose B’ is an extension basis, so that P is
isomorphic to B' by Theorem 3.2. From (3)-(5) of
Theorem 2.7 we can derive (3). To derive (1) and (2)
from (6) and (7) of Theorem 2.7, it will suffice to show
that the reciprocal isomorphisms g:B — P and f:P - B
have B, = gJ,,. Indeed,

= {beB|b = x}
= {gfb|bEB & fb = fx}
= {giblib= fx} =g J,,.

Now suppose {1) and (2) for all x in P. We claim that
B is an extension basis. Let f:B — Q be isotone. Define

g:P— Q by
gx =sup, f B,. (4)

as is possible because f B, is directed. Consider any
nonempty chain C C P. For v =sup,C we calculate that

g sup,C =sup, f B,
= sup, {fb|bEB & b= ¥}
= supQ{ﬂ)| bEB & (IXEC) (b= x)}
= sup,, {sup, f B, |x€C}
=sup, & C.

Therefore g is a continuous extension of f. Any such
must satisfy (4), so g is unique. OJ

Chain-complete posets that satisfy (1) and (2) in the
above theorem have sometimes been called “‘algebraic.”
Thus the theorem implies that P has an extension basis
iff P is algebraic.

Example 3.4 A countable complete lattice need not have
an extension basis. Let P be {L, T, a,, a,," "~ by, by},
ordered as shown in Fig. 1. The set B of all compact
elements of P is just {L}. There are two ways to apply
Theorem 3.3 in showing that P lacks an extension basis.
First, observe that sup B, = L # T, contrary to (2) in
Theorem 3.3. Second, observe that P-{T} is the set of
all chain-irreducible elements of P, contrary to (3) in
Theorem 3.3. The reader may also find it instructive to
derive the lack of an extension basis directly from
Definition 3.1. [

Example 3.5 Partial function posets have extension
bases. Let X, ¥ be sets, and let P be the set of all partial
functions mapping X into Y. Considering partial functions
as subsets of X X Y, we partially order P by set inclusion.
Then P is a chain-complete poset, as is well known. The
compact .elements are those that are finite subsets of
X X Y. Theorem 3.3 provides an extension basis. (]

141

CHAIN-COMPLETE POSETS




142

Figure 1 Countable complete lattice with no extension basis.

4. Spaces of continuous maps

If P and Q are chain-complete posets, then the set of all
chain-continuous maps fiP — @ becomes a chain-
complete poset [P — Q] under the usual ordering: f
=< gin [P— Q]iff fx= gxin Q for all x in P. We investi-
gate conditions under which [P — Q] has an extension
basis.

Lemma 4.1 Let P, Q be chain-complete posets, and let
PEP, geQ. Specify f(p, q):P — Q by

f(p, @)x= (if x = p then q else 1).

If p is compact, then f(p, q) is chain-continuous. If g
is also compact, then f(p, q) is compact in [P — Q]. O

G. MARKOWSKY AND B. K. ROSEN

Example 4.2 The existence of extension bases for P and
Q does not imply the existence of extension bases for
[P—Q].LetPbe{l,a, b, c,c,, "}, ordered as shown
in Fig. 2. For each fin [P — P], we show that

[P infinite implies f not compact. (1)
Let C be {c, c,, - -}. For each i let f, have

fix=fxif (fx¢Corfx=c,);

Jx= ¢, if (fx=c;forj>i).

Then {f,, f,,- -} is a chain whose supremum is f, but f,
# ffor all i.

Let g:P — P with gx = x, and let B, be the set of all
compact fin [P — P] such that f< g. We show that

B, is not directed. (2)

Consider f(a, a) and f(b, b) from Lemma 4.1. Both are
in B, Any upper bound ffor {f(a, a),f(b, b)} must have
faZa, fb = b, and hence fC C C. But f< g then implies
that fP is infinite. By (1), f cannot be compact.

Because all members of P are compact, Theorem 3.3
implies that it has an extension basis. But (2) and
Theorem 3.3 imply that [P — P] does not have an ex-
tension basis. [

Are there natural conditions under which [P — Q]
has an extension basis? The following property is
possessed by any lattice and by many posets that are
not lattices, such as the partial function poset from Ex-
ample 3.5.

Definition 4.3 A poset P has bounded joins iff every
finite subset of P with an upper bound has a supremum.

By Lemma 2.3, if P is chain-complete and has bounded
joins, then every bounded subset of P has a supremum.

Lemma 4.4 Let P, Q be chain-complete posets. For any
A C [P — (] and xEP, let Ax be {fx|fEA}. Then the
condition

(VXEP) (Ax has a supremum in Q) (nH
implies that

A has a supremum in [P — Q] (2)
and that all x in P have

(sup 4)x = sup(A4x). (3)

If Q has bounded joins, then so does [ P — Q], and then
(2) implies (1) also.

Proof Assume (1) and set gx =sup(Ax) for each x. Use
associativity of supremums in  and continuity of each
JEA to calculate that g is continuous. It is clearly the
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supremum of A. Now suppose Q has bounded joins and
h = sup A. Then hx is an upper bound of Ax and (1)
follows. OJ

Theorem 4.5 let P, O be chain-complete posets with
extension bases B, C (respectively). Suppose that either
P or Q has bounded joins. Then [P — Q] has an exten-
sion basis Y. where

Y= {sup 4|4 C F & A is finite &
A has a supremum in [P — Q]}, (1)
and

F={f(p. q)|pEB & ¢EC}. (2)

Proof Let X be the set of all compact members of [P
— Q].LetY,Fbeasin (1), (2). Then Y C X by Lemma
4.1 and the fact that a supremum of finitely many com-
pact items is compact. We show that Y is an extension
basis.

For each vin P let B, be {bEB[b = x}. Define C, for
each Y in Q and Y, for each hin [P — Q] similarly. We
show that

sup Y, = h for all /i in (P — Q). (3)

Of course. /1 is an upper bound for Y,. By Theorem 3.3
for Q. each b in B has

hb=sup C,, = sup {f (b, chblcEC,,}. (4)

Any ¢ in C,, has f(b. ¢) in Y,. s0 (4) implies that any
upper bound « for Y, has b = ub. This holds for all b
in B. so Lemma 2.3 and Theorem 3.3 for P imply that
h =< u for any upper bound «. This proves (3).

We show that

Y, is directed for all /i in [P — Ql. (5)

If O has bounded joins. then so does [P — Q] by Lemma
4.4. and (5) follows readily from the associativity of
sup. Now suppose instead that P has bounded joins. For
any g, =sup 4, and g, =sup 4, inY,, we seek g, in Y,
with ¢, = ¢, and g, = g,.

The set

M = {bEB|(AEC) (f(b.c) EA/UA,)}

is finite, and every subset of the form M N B_ for x in P
has a supremum in P and indeed in B,. Let

N = {sup (M NB,)|xEP} C B,

and list the members of N as (s,.---. 5.} in B" in such a
way that s; < s; implies i < j. Now (.-~ 1) in C* is
specified by induction. Recall that C,  is directed and
that Chsi c Chsj whenever s, = . Given t forall i < j it
is possible to choose in C,mj with g5, = and £,5= 1
for all i such that s, < s, The finite subset
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Figure 2 Foreachi.a < c¢;and b < ¢;and ¢;,, < ¢,

A3= {f(Sj, fj.)'] == /\}

of F is now shown to have a supremum g,. For each x in
P, sup(MNB_) =s; for some unique j and A,x has a
greatest element. namely ¢, Therefore 4,x has a supre-
mum for all x and so g, = sup A, exists in ¥ by Lemma
4.4. For each x in P, the j with 5, = sup(MN B,) has g,x
= ;= hs; = hx, 50 g, is in Y, Because ¢,x = ¢,3; also,
¢, = g, Similarly. g, = g,. This proves (5).

From (3) and (5) it follows first that Y = X (by Lemma
2.6) and then that Y is an extension basis (by Theorem
3.3).0
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The bounded joins assumption and the full force of
Theorem 3.3 were only used to obtain directedness
above. Under weaker conditions we can repeat the proof
of (3) above to express any /1 in [P — Q] as the supre-
mum of a very simple set of compact members of

[P~ Q]

Corollary 4.6 Let P,  be chain-complete posets, and let
B, C be any sets of compact members of P, O (respec-
tively ). Suppose each x in P and each v in Q have

x=sup B, & y=sup C,

for some B, C B and C,C C. with B directed. Then any
Juin [P — Q] has

h=sup {f(b, ) hEB & EC & ¢ = hb}. [

For use in the next section. we characterize those
finite 4 C F that have supremums in Theorem 4.5 for Q
with bounded joins. Let P. Q. B, C, and F be as in
Theorem 4.5.

Theorem 4.7 Suppose ( has bounded joins. For any
finite A C F, consider the set

114 = {h€B|EcEC)(f(b, c)EA)}. (1)

For each R C II4 with an upper bound in P, let

(]

3(4, R) = {ceC

flb, c)EA & bER}. (
Then A4 has a supremum in [P -> Q] iff

2{A. R) has a supremum in Q for all bounded R, (3)
and in that case

(sup A)x = sup % (A4, B,NIlA4) for all xin P. (4)

For any finite 4,, 4, C F with supremums in [P — Q].
sup 4, = sup 4, iff each f(b, ¢,)EA, has

¢, = sup {¢,€C|@3b, = b)) (f(b,, ¢,)EA,)}. (5
Proof Note that each x in P has
Ax=73(A. B, NIlA), (6)

and that each R C II4 with an upper bound in P has
R C B, NIIA for some x. Because Q has bounded joins.
a supremum for % (4, B, NHA) implies a supremum for
2(A4. R). By (6) and Lemma 4.4, A has a supremum iff
(3) holds, and in that case (4) holds.

Now suppose sup A, = sup A,. and consider any

(b, ¢ )EA,. Then (4) for A, yields

¢, =f(hy. ¢,)b, = sup S(4,. B, N1IA,)

1 )

=sup {¢,EC|(3b, = b)) (f(b,. ¢,)EA,)}.

This proves (5). Now suppose (5) for each flb c)EA,
so that (4) for 4, yields

¢, Z (sup A,)b, = (sup A,)x

1
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whenever b, = x. By (4) for A
{sup A, )x=sup Z(A4,, B,NI1l4,) = (sup A4,)x. O

5. Recursively based posets

A recursive listing of a subset B of a poset P maps the
nonnegative integers onto B in such a way that order
related questions about members of B can be answered
by algorithms that compute with the integers.

Definition 5.1 Let N be the set of nonnegative integers
and P be a poset. A recursive listing of a subset B of P
is a surjection 8:N — B such that, given any i, in N and
any finite M C N, it is decidable whether

Bi=1: (1
B;= Bj: (2)
BM has an upper bound in P: (3)
BM has an upper bound in B: (4
BM has a supremum in P; (5)
sup,, BM is in B: (6)
Bi = sup, M. (7)

Restated more formally, Definition 5.1(1) requires
that there be a {0, 1}-valued recursive function f such
that, for all / in N, fi= 1 iff 8i = L. For any of the usual
surjections A:N — {M C N|M finite}, Definition 5.1(3)
requires that there be a {0, 1}-valued recursive function
g such that, for all £ in N, gk = 1 iff BAk has an upper
bound in P. The other conditions can be restated similarly.

Note that 8 is not required to be injective or to be in
any sense ‘‘computable.” Members of P need not be
integers or objects represented as integers in any agreed
upon way, so it is meaningless to require that g itself be
“computable” in any absolute sense. For some choices
of P we might wish to require computability relative to
other maps.

Definition 5.2 A chain-complete poset P is recursively
based iff there is an extension basis B C P and a recur-
sive listing of B.

In Example 3.5, if X and Y are countable, then P is
recursively based.

Theorem 5.3. Let P, Q be recursively based chain-com-
plete posets. Suppose that Q has bounded joins. Then
[P — Q] is recursively based and has bounded joins.

Proof Let B. C be extension bases for P, Q with recursive
listings B, y. Theorem 4.5 provides an extension basis
Y for [P — Q] described in (1) and (2) from Theorem
4.5. Bounded joins for @ implies bounded joins for
[P — Q]. We must show that Y has a recursive listing
nN—>Y.
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Let A be any of the usual surjections
AN — {§ C N X N|S finite}.
so that there is a surjection o:N — {4 C F|A finite} with
oi = {f(Bj. YK (j, k) € Ai}.
Then there is a surjection 7:N — Y with
ni = [if (o has a supremum in [P — Q])
then sup (oi)
else J_U,_Q.].

We show that 7 is a recursive listing.
Consider first the problems of deciding

1. Whether o has a supremum in [P — Q]
2. Whether sup (oi) = L.

Given i, we can find Ai, then i = {j|(3k) ((j, k)EX)}.
For each M C i, we can decide whether 8M has an
upper bound in P and, if so, whether X(ci, BM) in
Theorem 4.7(2) has a supremum in Q. By Theorem 4.7,
we can decide 1). Decidability of 2) follows from

sup (o) = L iff (yk= L forall (j, k) € \i).

By deciding 1) and 2) we can decide whether ni = L, as
required by Definition 5.1(1). For Definition 5.1(2), we
also apply Theorem 4.7. To decide whether ni; = ni,
we need only decide whether all (j. ;) in A/, have

yk1 = sup {')’k2| (.igv k2) € }\lg & ,3./2 = le}v

and this can easily be done.

Because Q has bounded joins and because a supremum
of finitely many members of Y is in Y, the other require-
ments of Definition 5.1 can be met by demonstrating the
following claims. Given finite M C N and jEN, it is
decidable

3. Whether ) o7 has a supremum,

ey
and, if so,

4. Whether nj = sup (U O'i) < nj.
iEM

The decidability of 3) follows from Theorem 4.7, as for
1). The decidability of 4) follows from Theorem 4.7,
as for Definition 5.1(2). O

We have actually proved more than the bare fact that
[P — Q] is recursively based. Given algorithms for
deciding whether 8i = 1, whether yi = v/, and so on, we
have shown how to construct algorithms for deciding
whether ni = L, and so on. Given (j, k) in N X N, we can
effectively find / such that ni= (8, yk). We summarize
these facts in the following corollary.

Corollarv 5.4 Let P, Q be recursively based chain-
complete posets. Suppose Q has bounded joins. There is
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an effective construction of a recursive listing and as-
sociated decision procedures for the extension basis of
[P — Q] from such listings and procedures for the ex-
tension bases of P and . [1

Even for very simple choices of P and Q such that P
has bounded joins but Q lacks bounded joins, there can
be no effective construction of the above kind. Before
proving this, it is convenient to consider an example
showing the importance of bounded joins in Lemma 4.4.

Example 5.5 Supremums in [P — Q] need not be cal-
culable pointwise when Q lacks bounded joins. Let P be
{1,a, b} with L < a < b (so that P is a lattice). Let Q be
{1, a,, a,. a,. ¢, b}, ordered as shown in Fig. 3. For i
=1,2letfiP = Q withfl =1, fa=a,and fb="b. Then
{f.. f,} € [P~ Q] with supremum g such that gL = 1.
¢ a;=a,,and g b= b. However, {f,a.f,a} ={a,. a,} and
has no supremum in Q. [J

Theorem 5.6 There is a finite recursively based chain-
complete poset P with bounded joins and a countable
family {Q,|kEN} of recursively based chain-complete
posets such that each [P — Q,] is recursively based but
there is no effective construction of a recursive listing and
associated decision procedures for the extension basis
of [P — Q,] from such listings and procedures for P and

for Q,.

Proof Consider any enumeration of the deterministic
Turing machines and their input tapes. Let H:N X N
— {0, 1} with H (k, r) = 1 iff the kth machine halts on the
kth input after exactly r steps. Thus H is recursive
whereas the function T:N — {0. 1} with

Thk=1iff GreN)(H{k, r)=1)

is not recursive, as is well known.

Let P be as in Example 5.5. For each &, let O, have the
same elements as Q in Example 5.5, but with {c [r EN}
rather than just c. All r have a,, a, < ¢,. There is no order
relation between a, and ¢, or between ¢, and ¢, for r # s.
The other order relations of @ still hold in Q,:

L<a,a, <a, <b.

Finally,

¢, <binQ ifH(k r)=1

Letting f,, f, be as in Example 5.5, we obtain

{f;- f,} has a supremum iff ThA=0. (1)

Because P, 0, and [P > Q] consist entirely of com-
pact elements, Theorem 3.3 implies that these spaces
are extension bases for themselves. Choose a recursive
listing B8 for P and a recursive listing vy, for each Q.
Using a universal Turing machine, this can be done in a
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Figure 3 Poset without bounded joins.

uniform way. Not only does a recursive function g,:N
— {0, 1} have

YJ=1inQ iff g j=1,

but there is also a recursive function G: N X N — {0, 1}
with

Gk, j) =g, (j) forall &, j.

Similarly for the other conditions in Definition 5.1.
With the aid of an oracle for the halting problem, we
can construct a recursive listing , for P — Q,. The

G. MARKOWSKY AND B. K. ROSEN

oracle supplies Tk. As (1) illustrates, the requirements
of Definition 5.1 can easily be met when this bit of in-
formation is available,

We claim the oracle is necessary: No effective con-
struction can pass for all & from 8 and v, (with associated
decision procedures) to a listing 8, of [P — Q,] (with
associated decision procedures). Suppose otherwise.
We may assume

Bl =a& B2=0b;
Yl=a &vy2=a, & y4=bforall k.
Given &, effectiveness permits the finding of

Iy, Iy, SEN

such that

8,y =f(BlL.y, 1) =fla.a,);

8., =f(Bl.v2)=f(a,a,);

8,5 =f(B2, v, 4) =f(b, ).

We can then find i, i,€EN such that
8eiy=sup {8,r, 8,5} =f;

8.i, = sup {8,r,, 8,5} = f,.

Now define 7":N — {0, 1} by
T'k=1iff {§,i.8,,} has no supremum,

so that T’ is recursive. But 7= T’ by (1) and T is not
recursive. [J

In order to compare Theorem 5.3 with the results in
[14, 15] we must introduce a property stronger than
possession of bounded joins.

Definition 5.7 A subset A of a poset P is pairwise com-
patible iff every {x, v} C A4 has an upper bound in P. A
poset P is coherent iff every pairwise compatible 4 C P
has a supremum.

In particular, a coherent poset is chain-complete.
Using Corollary 2.9 to bridge the gap between w-com-
pleteness and completeness, it is not hard to show that
P is a coherent recursively based poset iff P is a “cpo
with a recursive basis™ [14, Sec. 11.2] iff P is a “domain
of calculation” [15, Chap. II1]. Thus the following cor-
ollary is equivalent to the theorem in [ 14, Sec. I1.2] and
to Lemma 2 in [15, Chap. II1].

Corollary 5.8 Let P and Q be coherent recursively based
posets. Then [P — Q] is a coherent recursively based
poset. [J

Coherence is a useful property. The partial function
poset of Example 3.5 is coherent, and this fact has been
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used countless times. To construct a total function
F:X — Y, it suffices to construct a family & of partial
functions f:X, — Y such that

x=U x,

[€.F
and such that any f, ¢ in &% have fx = gx whenever
xEX,N X,. This last condition is pairwise compatibility of
# . The function F is the supremum of %. Coherence is
therefore interesting in its own right. As we have shown,
it is not necessary in studying recursive listings of ex-
tension bases. It is not even helpful, except as a suf-
ficient condition for the possession of bounded joins.

A very slight simplification can be achieved by as-
suming that Q is a lattice: we need not bother deciding
whether subsets of Q have upper bounds. A chain-com-
plete poset Q with bounded joins can easily be made into
a complete lattice O by adding a new top element [2.
Sec. 4]. To do this prematurely may cause embarass-
ment. With one new element we can make [P — Q] into
a lattice [P — Q] . The lattice [P — Q" ] is cluttered with
a great many more new elements that map some members
of P into Q and others into Q° — Q. Ockham’s razor
would have us postpone the addition of an ad hoc top
until there is a definite need for it.
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