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ABSTRACT

In [6], Scott introduced continuous lattices as the correct setting for an abstract theory of computation.

motivation and definition of continuous lattices was primarily in topological terms. In [7], Scott discus:

continuous lattices primarily from a topological point of view. However, buried in [7] is an indical
(without proof) of how to approach continuous lattices from a purely order-theoretic perspective.
order-theoretic approach seems to have escaped the notice of most computer scientists. We develop
approach in the more general setting of chain-complete posets and offer some arguments in support of ¢
thesis that "continuous posets” (chain-complete posets with a basis) are the proper setting for an abs
theory of computation. Our definition of basis also generalizes that used by Markowsky and Rosen [S3E

Finally, we discuss a number of constructions which construct posets with a basis from posets with bases.

1. Introduction

Following Dana Scott’s lead [6], a number of authors (Egli and Constable [3], Markowsky and Rosen
Vuillemin [8]) have considered the problem of defining a basis for certain classes of posets. In
language, these posets with a basis would be called "continuous." The Markowsky-Rosen approach [5], b
on an analogy with the definition of a basis for a vector space, includes the definitions of Egli and Con

[3] and Vuillemin [8) as special cases. It does not include Scott’s definition [6,7] as a special case

context of lattices.

In this paper, we will use the concept of relative compactness. This concept is more general than tk
IN (denoted as < by Scott) used by Scott [6,7]. Furthermore, while Scott uses topological conce
motivate his definition of IN, the definition of relatively compact can be motivated in a very simple
purely on the basis of order- theoretic concerns which arise naturally in the theory of computation. We v
that relative compactness occurs in [7] following the proof of Theorem 2.11, but Scott uses the same 8
to denote it and IN. However, he does not derive its properties nor the relationship between these ‘¢
different concepts. Scott now seems to prefer relative compactness (which he calls "way below" and d

by <<) as the basic concept in defining continuous lattices.

Using relative compactness, a basis for a poset may be defined. At first glance this concept of &
would appear to be more general than Scott’s (as translated for posets). However, it will be shown thal
presence of a basis, the concepts of relative compactness and of IN agree. Thus the two notions of

coincide and we arrive at the class of continuous posets while avoiding topological considerations comp
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Furthermore, this concept of basis includes that of Markowsky and Rosen [5] as a special case. Finally, some
conditions under which posets with bases can be constructed starting with other posets with bases will be

presented.

All posets shall be assumed to be chain-complete posets (CPO’s), i.c., posets in which every chain has a
sup. In particular, CPO’s have least elements which are the sup’s of the empty chain. It follows [4; Corollary
2] that in a CPO every directed subset has a sup. Furthermore, it follows [4; p.56; Corollary 5] that if a CPO

happens to be a lattice, then it is a complete lattice.

There are two reasons for being primarily interested in sups of chains and directed sets. First, in most
posets of interest in computer science, sups of chains (and hence of directed sets) exist naturally or corre-
spond to natural objects which can easily be added to the original poset. Second, attempts to make arbitrary
(even finite) sups exist often require the introduction of elements which have no natural meaning and exist

solely to be the sups of certain subsets. The following example will illustrate these points.

Let A be some alphabet containing at least two characters. Let P be the set of all nonempty finite words
made from A. For w,w'eP, we say that w<w" iff w is a prefix of w'. Clearly, this relation partially orders P.
Note that P lacks a least clement, which would correspond to the empty word and be the sup of the empty
chain. Clearly, the empty word is a very natural object and most authors would have included it in the
definition of P. Furthermore, a bit of reflection will show that the sup of infinite chains in P can be
represented by infinite words which are also natural objects to work with (e.g., the decimal expansions of real
numbers). Thus aaa... would represent the sup of a<aa<aaa<... . For distinct a,be A, there is no natural

word-like object which would represent the sup of {a,b}.

An additional property worth discussing is that of possessing bounded join (sups)), i.e., whenever any
finite (arbitrary) nonempty subset which has an upper bound has a sup. Chain-complete posets with bounded
joins have sups [5; p.142] for all bounded sets and look like collections of complete lattices which have been

combined together. They occur quite naturally, e.g., the poset in the preceding example has bounded joins.

In most posets of interest to computer science, the partial ordering is loosely based on the amount of
"information” contained in the objects. Thus in the example above, if our goal is the infinite words, the word
aaa gives more "information" about an infinite word than does aa, since we now know the third letter. The
preceding point is useful motivation for the next section and gives some ideaa of the importance of the "limit"
objects. Usually the "finite" ("finitely computable") object consist of incomplete information and only the

limit objects fully describe some state.

2. Relatively Compact Elements and Bases

A basis always involves the concept of generation and often that of independence. In this case, the
requirement that a seg S, generate an element, x, translates into the requirement that S be directed and that x
= sup S. The notion of independence is a difficult one to capture in this setting. Markowsky and Rosen [5]
have developed an interpretation of it which we will discuss later. Here we will offer a slightly more general

approach than is used there.
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The chief reason for insisting that elements of a basis be independent is to guarantee that the representa
tion of an element by basis elements is nonredundant, i.e., that every element in the representation is essential °
and cannot be gotten rid of. Furthermore, the existence of a basis should tie the poset together, s0 that some-
en their representations by basis elements.

relations between elements can be inferred from relations betwe

2.1 Definition Let P be a poset and x,yeP.

(i) x is said to be compact if for every nonemply directed set DSP with sup D2x, there exists deD wi
d>x.
t DSP with sup D2

(ii) x is said to be relatively compact to y, xRCy, if for every nonempty directed se

there exists de D with d2x.

rees with that of Birkoff [1; p.186] and Crawley and Dilworth

‘information,"” i.e., the
bodies

The above definition of compactness ag
ontains some essential piece of !

p.13]. Note that a compact element is one which ¢
me element of the directed set already em

of a directed set embodies the “information"” in x iff so

n x. If Pis a CPO, one may define compactness by replacing directed sets in Definition 2.

information i
by chains [5; Lemma 2.5].

bout y, which cannot be suddenly produced by3

If xRCy, then x contains some essential information al
¢ information than y,

we have done 50

directed set. Thus if we have arrived at a point containing mor

because we have incorporated all of the information in X.

f the binary relation RC. Its proof is

The following lemma summarizes some of the properties O

straight-forward and hence has been omitted.

2.2 Lemma Let P be a poset and x,y,€P.
(i) xRCx iff x is compact.
(ii) xRCy implies X<y.
(I11) xRCy and y<z imply xRCz.
(iv) x<y and yRCz imply xRCz.
(v) xRCy and yRCz imply xRCz.

(vi) If z = sup {X 10 Xp} with xi,...,anCy. then zRCy. O

2.3 Definition Let P be a poset and x€P.

(i) A nonempty set DcP consisting of elements relatively compact to X is 3 local basis for x if D is d

and sup D=x.

A subset B is a basis of P whenever fi

of P has a local basis.
For xeP

(ii) P has a basis if every element
d if every element of B is in some local basis.

xe P some subset of B is a local basis for x an

B, to denote this local basis.
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2.4 Proposition Let P be a poset and yeP. Then y has a local basis iff Dy, defined as {xeP | xRCy}, is a local

basis for y. Note that D, is closed below (z<x and xeD, imply zeDy) by Lemma 2.2.

Proof: Since efficiency is trivial, we first prove necessity. Let D by any directed set of elements relatively
compact to y such that y = sup D. For all xe D,, there exists d,¢D such that x<d,. Note also that D<D,,
whence it follows easily that Dy is directed. By Lemma 2.2, xe¢ Dy implies that x<y. Thus y is an upper
bound for D,. Since y = sup D and DeD,, it follows that y = sup Dy. Thus D, is a local basis for y. [

Throughout this paper, Dy will denote the set of all elements relatively compact to y. Proposition 2.4
shows that for a poset P with a basis, the set Bp={x|xRCy for some yeP} is a basis and contains all other
bases. Thus, one can think of it as the natural basis for P. The following theorem is the key result which

enables us to relate our definition of basis to the generalization of Scott’s topological definition.

2.5 Theorem Let P be a poset with a basis, x,ye P with xRCy and DSP a nonempty directed set such that sup
D2>y. Then there exists ze D, such that xRCz. In particular, RC interpolates, i.e., there exists ze Dy such that
xRCzRCy.

Proof: For all zeD,, let D,={teP|tRCz}. By Proposition 2.4, D, is directed and sup D,=z. Let D* -ZEDD,.
If z;, zyeD and z,<z,, DzlGDz2 by Lemma 2.2. Thus D* is directed. Furthermore, sup D* = sup D>y.
Thus for some te D*, x<t. But te D, for some ze D, whence xRCz by Lemma 2.2. O

Note that all chains have a basis. Furthermore, let X and Y be sets-and Pfun(X,Y) be the set of all
partial functions from X into Y, where a partial function is an ordered pair (S,f) with S€X and f:S-+Y a
function. Pfun(X,Y) is ordered by (S,f)<(T,g) iff SET and g|S=f. It is easy to see that (S,f) RC (T,g) iff
(8.f)<(T,g) and S is finite. In particular, for finite S, (S,f) is compact. Pfun(X,Y) has a unique basis - the set
of all compact elements. Note also that Pfun(X,Y) is a natural example of a continuous poset which is not a

lattice, although it does possess bounded sups.
3. Other Notations of Basis

In this section, the definitions of basis as studied by Scott {6, 7] will be compared to those of Markowsky
and Rosen [5]. We will redo Scott’s topological approach in the more general context of posets, but ignore

the questions of countability raised by Scott in [6].
3.1 Definition Let P be a poset, SSP and x,yeP.

(i) S is said to be open if it is closed above (1eS, weP and t<w imply weS) and for every nonempty

directed DEP, sup DeS implies DnS is nonempty.
(i) xINy if there exists an open set USP such that ye U and x<t for all te U.
(iii) A nonempty directed set DEP such that tINy for all teD, is a local Scott basis for y if sup D=y.

(iv) P has a Scott basis if every point has a local Scott basis. A subset, B, of P is a Scott basis of P if for

every element of P some subset of B is a local Scott basis and every element of B is in some local Scott basis.
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3.2 Lemma Let P be a poset, x,yeP. If xINy, then xRCy.

Proof: Let D be directed such that sup D2y. Since xiNy, there exists an open set USP such that yeU and
x<t for all teU. Since U is open, sup DeU, whence deU for some deD. But this implies d>x, thus, xRCy.

8]

3.3 Example This example shows that xRCy can hold without xINy holding. Let N*={0,1,2,...}u{=} be

ordered in the obvious way. Let P = {0} u ({-1} xN*) (NxN*)u{(ex,0) where N denotes the natural
numbers. We order P as follows: 0 is the least element of P; (m,n)<(m',n') with m,m',nn'eN iff mam' and
n<n' in N; (e,) is the greatest element of P; for meN, (m,»)2(-1,0), (m',n') providing m2n, m'¢N; -5

(-1,m)2(-1,m') providing m>m"' in N=. The reader can verify that the above define a partial ordering on P. :

Note that (-1,0)RC(-1e) since the only nontrivial directed sets whose sups are 2(-1,) are ones which

include cofinal sections either of the chain {(-1,n) | neN} or {(m,=) |meN}. We claim that (-1,0)IN(-1,0}

does not hold.

Let U be any open set containing (-1,.). Since sup {(-I.mil neN}eU, (-1,)eU for some ne N. Since

is closed above, (n,»)eU for some neN. Since (n,o)=sup {(n,m)|meN}, (n,m)eU for some meN. By
(n,m)#(-1,0). Thus no open set containing (-1,) consists entirely of clements 2 (-1,0). Th

(-1,0)IN(-1,%0) fails to hold. (3

3.4 Theorem Let P be a poset with a basis and x,yeP. Then xRCy iff xINy. Thus any basis is a Scott b
and vice versa. Actually, the following proof shows that if x has the property that for all y, xRCy implies th

there exists z with xRCzRCy, then xRCy implies xINy.

Pf: That xINy imples xRCy follows from Lemma 3.2. Now suppose xRCy. Let U={zeP|xRCz}. By Lems
2.2, U is closed above and x<z for all zeU. By Theorem 2.5, if sup DeU, DnU is nonempty. Thus U ;

open and xINy. (3

Following Scott’s lead one can use the term continuous poset to denote any chain-complete poset W
has a basis. In the context of lattices, Scott [6] required that finite sups of basis elements be basis elem

For lattices with a basis as in Definition 2.1 this requirement is met as a consequence of Lemma 2.2 (vi}i

Proposition 2.4.

Note that Scott’s continuous lattices are not continuous lattices in the sense of Crawley and Dilwo
p.15] although they must of necessity be “upper continuous” in the terminology of Crawley and Dilwgr§

Furthermore, Jeffrey Leon’s example [2; p.16] shows that a lattice can be continuous in the sense of Craw

and Dilworth without possessing a basis.

We now turn our attention to the concept of basis studied by Markowsky and Rosen [5]. A basis,
a vector space, -V, is a subset of V such that an arbitrary map f:B+W with W a vector space extend! i
unique linear map f*:V-+W. With this in mind, Markowsky and Rosen defined a basis, B, of a chain :
poset, P, to be a subset such that an arbitrary isotone (order-preserving) map f:B+Q with Q a chain

poset extends to a unique continuous map (one preserving sups of nonempty directed sets; see [4
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Corollary 2] for more details). This definition does not lend itself to ready comparison with the other
definitions presented here, although it makes clear how a basis is to satisfy the generation and independence
conditions. However, Theorem 3.3 of {5] provides the necessary bridge to relate this definition of basis to the
others. It asserts that a set B has the above mapping property iff it is in the set of compact elements of P and

a local MR basis (see Definition 3.5 below) can be selected from B for each point of P,
3.5 Definition Let P be a poset and yeP.

(i) A nonempty directed subset, D, of P consisting of compact elements is a local MR basis for y if sup

D=y.

(ii) P has an MR basis if every point has local MR basis. A subset B of P is an MR basis for P if for
every xeP some subset of B is a local MR basis for x and every element of B is in some local MR basis. A

chain-complete poset with an MR basis can also be called algebraic (see [1; p.187)).

The following proposition is proved in the same way that Proposition 2.4 is proved. Hence we have

omitted the proof.

3.5 Proposition Let P be a poset and yeP. Then y has a local MR basis iff MRy defined to be {xeP|x is
compact and x<y} is a local MR basis for y. Note MR, nced not be closed below. [J

An MR basis arises naturally if one wants a basis so that each local basis is simply given by looking at the
elements of some fixed set which are < the element we are working with. Note that in our previous definition
of basis we impose a basis locally and do not require much in the way of interrelation among the local bases.
In view of Proposition 2.4 and Lemma 2.2 we can require that x<y imply D,sD;. In the case of an MR
basis, note that x<y implies MRlsMRy n (x]), where (x] = {zeP|z<x}. Theorem 3.7 shows that this

regularity condition forces a basis to become an MR basis.

3.7 Theorem Let P be a poset. P has an MR basis iff there exists BSP such that for all yeP, Bn(y] is a local

basis for y.

Proof: Necessity Let B be the set of all compact elements of P. It follows that Bn(y] = MRy. and by

Proposition 3.6 this gives a local basis for y.

Sufficiency Let xeB. Since xeBn(x}, xRCx and by Lemma 2.2, x is compact. Thus B consists entirely of
compact elements and thus Bn(y] is actually a local MR basis for each yeP. Thus P has an MR basis. [

Furthermore, if P has an MR basis, B, then B is unique and must be the set of all the compact elements

of P. Note that if P has a basis (Definition 2.1}, B, then B must contain the set of all compact elements of P.

4. Constructions Using Posets With a Basis

In the section, we will discuss a number of poset constructions which produce posets with a basis starting
from posets with a basis. The first construction we consider is the Cartesian product of posets ordered

componentwise.
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4.1 Theorem Let {P,},,, be a family of posets, each with a least clement and a basis, and P=Il,, 4P, their

Cartesian product ordered componentwise. Then P has a least element and a basis.

Proof: For each a=(a,)€P, let D,={(b,) | b,cP, such that b #0 for only finitely many a's and for those a’s

b,RCa,}. The reader can verify easily that D, is a local basis for a. Thus P has a basis. []

It is important to note that Theorem 4.1 could be false if the posets have a basis but lack least elements.

This is illustrated in Example 4.2.

4.2 Example Let P -.HIR. Given a=(a;)<(b;)=b, let c,=(c,;) be given by cqi=b; for i<n and c,;=a;—1 for"
] >

i>n. Then {c,} is a chain with sup {c,}=b. But for all n, ¢ ¥a,. Thus for all a,beP, aRCb fails to hold

Thus P lacks a basis. []

The reader can verify that finite Cartesian products of posets with basis have a basis.
4.3 Definition Let P and Q be posets.

(i) A map f:P=Q is said to be continuous if for every nonempty directed set D<P such that sup D exists in

P, f(sup D) is the sup of f(D).

(ii) Let Con(P,Q) denote the poset of all continuous maps from P into Q. Here f<g iff for all xeP,

f(x)<g(x). Note that Scott uses [P+ Q] to denote this poset.

Note that continuous maps are isotone. Furthermore, if P is chain-complete a map is continuous iff for:

every nonempty chain C<P, f(sup C)=sup f(C) [4; p.56, Corollary 3].

The poset Con(P,Q) is used in a number of constructions and it is of interest to know when Con(P,
has a basis given that P and Q each have a basis. The following example shows that it is possible for P and Qe
to be a chain-complete and have bases without Con (P,Q) having a basis. (Note that if Q is chain-comple

so is Con (P,Q).) This example is essentially Example 4.2 from sl

4.4 Example Let P={0,a,b,cy,c,,...} be ordered by: 0 is the least element of P; a and b are <c; for all i; ¢
for i>j. Every element of P is compact and hence P has a basis. However, Con (P,P) does not have a ba

In particular, we will show that the identity map f: PP does not have a local basis in Con (P,P).

The reader can easily verify that the maps g:P-P given by g(x)=a if x>a, g(0)=g(b)=0 and h:P»
given by h(x)=b if x>b, h(0)=h(a)=0 are continuous and relatively compact to f. If there were local bas
for f, we could find a continuous map f*:P—+P such that f*RCf and gh<f*. If f>f*>gh, f*(fcg.cpye--1) 18

infinite subset of {cy,cy,...}.

Let f* (x) be given by x for x2c,, x=a,b or 0, and otherwise by c;,; where f*(x)=c; Clear}

sup{f* (x)}=f(x) but f*£f*_ for all n. This contradicts the fact that {* RCf. O
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In general, if p and Q both have bases, the reason Con(P,Q) lacks a basis is that we cannot generally find
directed subsets of relatively compact clements with the desired sups. The following theorem clarifies these

matters somewhat. These results are gencralizations of Scott’s Theorem 3.3 [71.

4.5 Theorem Let P and Q be posets with basis, and assume that Q has a least element 0. For peP and qeQ,
let {(p.q): P+Q be given by f(p.q)(x)=q if PRCx and f(p,q)(x)=0 otherwise.

(i) For all pep, qeqQ, f(p,q)zCon(p.q).

(ii) For all pe P, geQ and ge Con(P,Q), qRCg(p) implies that f(p,q)RCg. Furthermore, if g<sup D for
some nonempty directed subset D<Con(P,Q), then f(p.q)RCh for some heD.

(iii) For all geCon(P,Q), gesup {f(p,q) 1 peP, qeQ and qRCg(p)}.
Proof:

(i) Let DSP be a nonempty directed set with sup D=x. If pRCx fails to hold, f(p,q)(x)=0. Since for all
deD, d<x, pRCd fails to hold for aj} d, sup (f(p,q)(D))=0. If PRCx, then by Theorem 2.5, pRCA* for some
d*eD. Thus qmf(p,q) (d*)=f(p.q)(x), whence f(p.q)(x)=sup f(p,q)(D).

(ii) Suppose (g,}"D is a directed subset of Con(P,Q) such that sup {g.} exists in Con(P,Q) and is > 8
In particular, sup {g.(p)} > g(p). Since qRCg(p), by Theorem 2.5 it follows that qRCg..(p) for some a*eD.
We now claim that f(p.q)(x)sg,.(x) for all xeP. We need only consider the case with pRCx, else
f(p.q)(x)=0. If PRCx, p<x, whence g,.(x)zg,.(p)zq-f(p,q)(x). Thus f(p,q)sga.. Note that the above
proof repeated actually yields f(p,q)RCg,..

(iii) Since P has a basis, for all X, x=supD, where D, is the directed set of all p such that pPRCx. Since g
Is continuous g(x)=sup {g(p) I pPRCx}. Since Q has a basis, glp) = sung(p) where Dg(p) is the directed set of
all geQ such that qRCg(p). Thus g(x)=sup {q IqRCg(p) and PRCx}=sup {f(p.q)(x) | qRCg(p) and
pPRCx}=sup {f(p,q)(x)lqRCg(p)}. Thus g is the pointwise sup of the f(p,q)’s, whence it must be their sup.
0

Note that even though the set {f(p,q)lqRCg(p)} need not be directed, for each xeP, the set
H(p,q)(x)| qRCg(p)} is directed. Thus we almost have a basis. If we wish to have a basis for Con(P,Q) we

must impose further conditions on P and Q. The following theorem is a generalization of Theorem 4.5 of [5].

4.6 Theorem Let P and Q be as in Theorem 4.5. Further, assume that either P or Q has bounded joins. Then
Con(P,Q) has a basis.

Proof:

(A) If Q has bounded joins, one easily verifies that Con(P,Q) does also. Thus every finite subset of
Hipgy| qRCg(p)} has a sup and the collection of ajl these sups is a directed set whose limit is g by Theorem
A Furthcrmore, by Theorem 4.5 and Lemma 2.2 each of these sups is relatively compact to g. Thus for

cach g we have constructed a local basis, whence Con(P,Q) has a basis.
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(B) If P has bounded joins, we will show that for each ge Con(P,Q) the set D's-{sup Al A a nonempty
finite subset of {f(p.Q) 1qRCg(p)} which has a sup in Con(P,Q)} is a local basis or g. Clearly, by Theorem
4.5 sup D' =g and by Theorem 4.5 and Lemma 2.2 every element of D'y is relatively compact to g. It

remains only to show that D'y is directed.

Suppose g;.82€ D',, we must find g3eD’y with g,.82583- Suppose g;=Sup A, and gy= SUp A, with A,
and A, finite subsets of the type described earlier.

Let M={peP|for some qeQ, f(p.q)eA,qul. M is a nonempty, finite set. Let Nw={p*eP|p*=sup F
for some FSM}. Note that each subset F of M ecither has a sup Of has no upper pbounds at all. List the
members of N as PP’k where p‘i<p‘i implies i<j. For i=1,...k, let Fi-[peM Ipspi} Clearly, F; is the

largest subset of M whose sup equals p*:

We define a sequence qj..--,q;€Q by induction so that it has the following properties: (a) qRCsg(p*)) for ""}
jm1,..k; (b) if P*SP*} then q;<q;; (c) if p*;eM, q;24d for all qeQ such that f(p*, Q) € AjUA,. Assume that {
we have defined q; for i<m. Let Dgpey be the local basis for g(p*- Let
H={q;| p‘i<p‘m}u{q| f(p* @) €A VAL H is casily seen to be a finite subset of Dype - Thus we can find

Q€ Dl(p‘_) which is an upper bound for H. Clearly, Gy satisfies (a), (b) and (c).

We note that the q; have the following property: for xeP, if p%RCx but p*nRCx fails for m>i, then

g;2q; for all j such that p*:RCx. To see this let M‘-{peMlpRCx}. Since M, is nonempty and is bounded

i
above by x, sup My=p*; for some t. Note that F;sM,, whence p*2p*;. Since p*mRCx fails for all m>i, and

t2i, t=i and Mx"Fi~ If p‘jRCx, then FjQMx-Fi, whence P‘jSP'i and quq-I by (b) above.
Let g3 be given by
g(x) =g if p*;RCx by p* RCx fails for all m>i
= 0 if p*;RCx fails for alli=1,...k.

From the preceding paragraph it follows that g, is isotone. Arguing as in the proof of Theorem 4.5(i) shows

that g4 is continuous. It is now easy to see that g3 is the sup of {t(p*.a) | i=1,..k} in Con(P,Q).

Since qiRCg(p'i). by Theorem 4.5 and Lemma 2.2 We get that g3RCg. By (c) above it follows that
g32f(p.q) for all f(p,Q) €A UAL, whence g3281.82- a

We will not discuss the generalization of the material on recursive listings for an MR basis of a poset

which is in [5]. Matters become a good deal more complicated and should be dealt with separately.
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