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On a Class of One-Step Majority-Logic Decodable Cyclic

Codes

Majority-logic decoding is attractive for three reasons: (1) It can be simply implemented; (2) the decoding delay is short;
and (3) its performance, while suboptimal, is always superior to bounded distance decoding. For these reasons, majority-
logic decodable cyclic codes are very suitable for error control in high speed digital data transmission systems. Among
the majority-logic decodable codes, the one-step decodable codes can be most easily implemented; they employ a single
majority-logic gate. In this paper we study a class of one-step majority-logic decodable cyclic codes. First, we describe
these codes in a simple manner. Second, a way of finding the orthogonal polynomials for decoding these codes is
presented. Third, we show that for a given error correction capability, the ratio of the number of parity digits to the code
length goes to zero as the code length increases. For error correction capabilities of the form 2¥ — 1 or 2*, we determine

the dimensions of the codes exactly.

1. Introduction

Majority-logic decoding is attractive for three reasons: (1)
It can be simply implemented; (2) the decoding delay is
short; and (3) its performance, while suboptimal, is supe-
rior to bounded distance decoding [1]. For these reasons,
majority-logic decodable cyclic codes are very suitable
for error control in high speed digital data transmission
systems. Among the majority-logic decodable codes, the
one-step decodable codes can be most easily imple-
mented, since they employ a single majority-logic gate
[1-3]. In this paper, we study a class of one-step majority-
logic decodable codes. This class of codes is a subclass of
the generalized Euclidean geometry codes (which are not
in general one-step majority-logic decodable) studied by
Delsarte [4], Kasami and Lin [5], and Lin and Yiu [6].
First, we briefly describe the codes in a simple manner.
Second, a method of finding the orthogonal polynomials
(or orthogonal parity-sums) for decoding these codes is
presented. Third, we show that for a given error correc-
tion capability, the ratio of the number of parity-check
digits to the code length goes to zero as the code length
increases. For error correction capabilities of the form
2 — 1 or 2*, we determine the dimensions of the codes
exactly. At the end, we present an example to illustrate
the process of finding the orthogonal polynomials.

»

Since the decoding of these codes is based on the prop-
erty that these codes, when extended by the addition of
an overall parity-check digit, are invariant under the af-

fine group of permutations, we give a brief discussion of

this invariant property here.

Let C be a binary cyclic code of length n = 2" — 1,
generated by the polynomial g(X). Let C, be a code ob-
tained from C by appending an overall parity-check digit
to every code vector in C, i.e., if

(Ugs Uy Uyy = -y U, )
is a vector in C, then

(g, uyyu,u, -, u

0 1> 2 n—l)

is a vector in C,, where u,, is the overall parity-check digit
and

U, =u, Qu Su,®- - Ou,

1°

where © denotes the modulo-2 addition. Clearly, the
length of C, is 2.

Let GF(2™) be the Galois field of 2™ elements. Let a be
a primitive element in GF(2™). Then the nonzero elements
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in GF(2™) can be expressed as powers of &, @’ = 1, a!, o?,

o, a® Ha¥ ' = 1). The zero element 0 in GF(2™) is
sometimes represented by «”. Now, we number the com-
ponents of a vector (u,, U, U, * * *, um_,) in C, by the
elements of GF(2™) as follows: The component #_ is num-
bered o”, the component u, is numbered o’ and, for 1 =
i <2™ — 1, the component u, is numbered o'. These num-
bers are called location numbers. Let Y denote the loca-
tion of a component in (u,, 4, u4,, * - *, U,~_,). An affine
permutation with parameters a and b in GF2™)and a # 0
is a permutation that carries the component at location Y
to the location aY + b. The code C, is said to be invariant
under the affine group of permutations if every affine per-
mutation carries every code vector in C, into another
code vector in C,.

Let h be a nonnegative integer less than 2™. The radix-2
expansion of & is

h=8+82+8,-2+---+3§, 2"

’

where 8, is either 0 or 1 for 0 < i < m. Let & be another
nonnegative integer < 2" whose radix-2-expansion is

Wo=8,+8 -2+8 -2+ .-+8, _ 2""

The integer A’ is said to be a descendant of h if 8, = 8, for
0 =i < m. We also write k' =* h meaning that 4 is a
descendant of h. Clearly, for all £, 0 <* h. Let A(h) de-
note the set of all nonzero descendants of 4. The follow-
ing theorem characterizes the necessary and sufficient
condition for the extension C, of a cyclic code C to be
invariant under the affine group of permutations.

® Theorem | (Kasami, Lin, and Peterson [7])

Let C be a cyclic code of length 2™ — 1 generated by g(X).
Let C, be the extended code obtained from C by append-
ing an overall parity-check digit. Let GF(2™) be the Galois
field of 2" elements. Let a be a primitive element of
GF(2"). Then the extended code C, is invariant under the
affine group of permutations if and only if, for every a"
that is a root of the generator polynomial g(X) of C, for
every h' € A(h), &" is also a root of g(X), and o’ is not a
root of g(X). [J

A cyclic code of length 2™ — 1 whose generator poly-
nomial satisfies the conditions given in the above theorem
is said to have the doubly transitive invariant property. In
the next section, we describe a class of one-step majority-
logic decodable cyclic codes whose dual codes have the
doubly transitive invariant property.

2. The codes

Let J and L be two factors of 2" — lsuchthatJ - L =
2™ — 1. The polynomial X* ' + I can be factored as fol-
lows:
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X h =1+ XY+ X+ XY 4+ XY,

Let
U'(X) =1+ XJ + XZ.I + oo+ X(L—I)J. (1)

It is well known that the 2™ — 1 nonzero elements of
GF(2™ form the 2™ — 1 roots of X* ...—l + 1. Leta be a
primitive element of GF(2™). Since a® ' = 1, it is easy to
see that 1, o, o™, - - -, &’ are the J roots of 1 + X”.
Therefore, the polynomial o(X) = 1 + X’ + X* + - - - +
X“™hasa®,0 < h < 2™ — 1, as a root if and only if & is
not a multiple of L.

Now, we form a polynomial H(X) over GF(2) as fol-
lows: H(X) has o" as a root if and only if both of the fol-
lowing are satisfied:

1. o is a root of o(X), and
2. For every ' € A(h), a" is also a root of o(X) (0 &
A(h)).

Let o' be a root of H(X). Let m,(X) be the minimal poly-
nomial of o!. Then

H(X) = LCM {minimal polynomials m,(X)
of the roots of H(X)}.

It is clear that H(X) is a factor of o(X).

Let € be the cyclic code of length 2™ — 1 generated by
H(X). It follows from Theorem 1 that C has the doubly
transitive invariant property, i.e., the extended code C,
of C is invariant under the affine group of permutations.
Now, let C be the dua!_ code of C. Then C is also cyclic.
Since H(X) divides X* ~' + 1, we have

X7+ 1 = GXO)HX).

Let k be the degree of H(X). Then the degree of G(X) is
2™ — k ~ 1. It follows from the theory of cyclic codes that
the generator polynomial of C is

gX) = X¥*'G(x Y. Q)

In the next section, we show that C generated by
g(X) = X**'G(X7") is one-step majority-logic decod-
able and is capable of correcting at least ¢, = (J — 1)/2
or fewer errors (note that J is odd).

3. Orthogonal parity-check sums and decoding

Since o(X) is a multiple of H(X), it is a code polynomial in
code C generated by H(X). Since C is cyclic, Xo(X),
X*a(X), - - -, X' 'o(X) are also code polynomials in C. It
can be seen easily that, for i # j, X'o(X) and X’o(X) do
not have any common component. Letv,, v, - -, v,_ be
the corresponding vectors (with length 2™ — 1) of o(X),
Xo(X), - - -, X’ 'o(X). The Hamming weight of each of
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these vectors is L. Adding an overall parity-check digit to
each of these vectors, we obtain J vectors u,u, o, u
of length 2™. The vectors u, u, * -, u,_, are code vec-
tors in C, (the extension of C,). Since L is odd, the overall
parity-check digit of each u, is a 1. Thus, ug, u,, - - -, u,_,
have the following properties:

1. They all have 1 at location «” (overall parity-check
digit location);

2. One and only one vector has a 1 at location o’ for j =
0,1,2,-.-,2" -2,

These vectors are said to be orthogonal on the digit at
location o” [1].

Now, we apply the affine permutation
Z=a¥+d ?

to u, w;, - - -, u,_,. This permutation carries the set of J
vectors u,, u,, - -, u,_, into another J vectors w,, @,,

**, @,_, in C,. Note that the permutation carries the
component of u, at location a” to location &® °. Thus, the

vectors @y, @, * * *, @, have the following properties:

1. All the vectors have a 1 at location azm_z;
2. One and only one vector has a 1 at location o’ for j =

w’ov 1’--.’2'"_3'
Hence, o), @,, - - -, w,_ are orthogonal on the digit at
location &® %, Deleting the digit at location a” from
W, @, ", @,_, we obtain J vectors z,, z,, - - -, Z,_, of

length 2" — 1 which are code vectors in code C. These
vectors are still orthogonal to the digit at location o”
and will be used for decoding the code C generated by
gX) = X" 7 G 7.

Suppose a vector in C is transmitted and a vector r =
(rgs s« « +, rym_,) is received. For decoding r, we form the
following inner products:

Ay =rzy=r -2, Brz, & - D rpm_ " Zym,,
A1=r'zl=r0'zm®r1'zu DBy 2y
A =r-z,,
=1z, 2511 DDy 2y oms
3)

where r - z, denotes the inner product of r and z, and z,;
denotes the jth component of z,. These J inner products
are called parity-check sums [1]. Since C and C are dual
58 codes and since z,, z,, * - -, z,_, are vectors in C ifrisa
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code word in C, thenr -z, =0fori=0,1,-- -, J— l,ie.,
A,=A =---=A,  =0.Ifthereceived vectorris not a
code word in C, it must be a sum of the transmitted code
word x and an unknown error vector e = (¢, e,, * - -,
eym_y), i.e.,

r=x®e.
Sincex-z,=0fori=0,1,---,J— 1, we obtain, from
(3), the following relations between the parity-check sums
Ay A, - -0, A and the error digits:
Aj=r-z,=e-z,=¢,'2,Dez, D - D epm,,
A=r-z=ez2=¢"2,Dez @ - D epm,
A.I—l =r-z,,

=e-z,,=¢'2,_,,DPez, B Depm,

)

(Note that z ym_, =z, gm_, =+ =2,  ,m, = |.) From

(4), we see that the error digit e,_, appears in every pari-
ty-check sum.

Suppose there are ¢, = (J — 1)/2 or fewer transmission
errors in e. We will show that the error digit e,»_, can
be correctly determined from the parity-check sums. If
e,n_, = 1, then the other nonzero error digits can distrib-
ute among at most [(/ — 1)/2] — 1 parity-check sums.
Hence, at least J — [(J — 1)/2] + 1 = (J + 3)/2, or more
than half of the parity-check sums, are equal to e,»_, = 1.
However, if ¢,m_, = 0, the nonzero error digit can distrib-
ute among at most (J — 1)/2 parity-check sums. Hence, at
least J — (J — 1)/2 = (J + 1)/2 (more than half) parity-
check sums are equal to e,»_, = 0. Thus, if the number of
errors in e is (J — 1)/2 or less, the value of e,m_, is simply
equal to the value assumed by a majority of the parity-
check sums A, A,, - - -, A,_,. Based on the above facts,
an algorithm for decoding e,~_, can be formulated as fol-
lows: The error digit e,»_, is decoded as 1 if a clear major-
ity of the parity-check sums is 1; otherwise, e,=_, is de-
coded as 0. Since C is cyclic, decoding of other error dig-
its is the same as decoding e,_, [2,3]. The above
decoding algorithm is referred to as one-step majority de-
coding.

The decoding can be implemented with a single J-input
majority-logic gate. When r is received, the parity-check
sums are formed. These parity-check sums are the inputs
to a majority-logic gate. The output of this gate is the esti-
mate of e,»_,. Once e,n_, is decoded, we correct the re-
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ceived digits r,~_, by taking the sum r,n_, @ €,n_,. Then
the received vector is shifted cyclically one place to the
right, and the error digit e,_, is ready to be decoded. The
error digits are decoded sequentially from e,n_, to ¢,.

4. Numerical parameters

For the codes described above, we have that the number
of the parity check digits is 2" — 1 — deg H(X), while the
total length of the code is 2" — 1. We will show that

., deg HX)
lim ———— =1

Low 2T — ]

’

and, for J of the form 2* + 1, give the exact formulas for
deg H(X).

e Lemma 2
Let J = 3 be any odd integer. There exists a positive in-
teger 8 such that we can find an L solving JL = 2™ — 1 iff
m = 0 (mod d). Furthermore, if we let L, be such that
JL, =2° = 1, then, if JL, =2 - 1,

A-1
L =3 2°L,.

i=0
Proof Since Jis odd, 2 is a member of the group of units
of Z, and has an order 8. We claim that § has all the prop-
erties stated above. This is fairly straightforward since
solving JL = 2" — 1 is equivalent to solving 2" = 1 (mod
J) and since 8 is the order of 2. To conclude the proof of
the lemma we observe that

A—1 AS—1

2
JL, = JLI(Z 2“) ) (26 —
=0

)=2“~1.[j

Let J, 8, A, and L, be as above and m = A8. Then it
follows that deg H(X) = (2" — 1) — U, where U = {hll <
h=2"—1and 3 © with OL, == h}|. Note that U gives the
number of parity bits, since it enumerates those integers
which have multiples of L, as descendants.

® Theorem 3

. U
lim = 0.

Ao 2T —
Thus,
deg H(X) -

ro 2T - ]

Proof By the principle of inclusion and exclusion [8],
J

J
U= Z Mm,"“\ - z Mm.th.szA

=1 indp=1
Vo dy<iy
J

+Z M + .

1 miyLyiglasisly
i =1 v
[RIRIN
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where for k m-digit binary numbers a, - - -, a,,

Mo 0, =l =h=2"—landa, =*hVi}

m.a,

From Lemma 2, we see that each L, looks like A copies
of L, with sufficient leading 0’s to make A consecutive
blocks of size 8. Since we only allow our indices to range
between 1 and J (recall JL, = 2° — 1), each iL, looks like A
copies of iL,. Thus, looking at the A blocks of size § we
see that M A

(RN AR % A M&,illq, BRI A

Now, we see that

J J
U= My, - 3 M

8,43 Ly.1pLy +
i=1 1ig=1
i,<iy
Thus,
U r\
5,;5(2’— 1)(2—5) ,
where I' = max {Ms.u. li=1,-- -, J} Note that since iL,

isnot 0, M, = 2°"'. Actually, since L is odd, iL
contains at least two 1’s in its binary representation and
M,, =2 Thus

U _ @ -

- —

2m 4A 4
which goes to 0 as A — «. [

We now give some additional information about U.

e Corollary 4
In the above notation,

li v 1
)‘l_l"ll pl—‘)‘ -
where p = [{ilM,;, =T}.

Proof We claim that M, <Tforalli <i, <

,ilLl.fgI:h' < ixly
--»<i.and k = 2. To see this note that M, , . =
. 110 » thety
min (M, , My, " My} If all the My, _ r,
then note that My, , ..., <My, ., <A, where A =

Hhil < h<2" — TandiL, UilL, <*h). ByiL, UilL,
we mean the binary number having a 1 whenever i L
or i,L have a . Since i L, and i,L, are distinct numbers
having the same number of digits, the number i L, U i,L,
has strictly more digits than either of them, whence
A <T. The formula for U derived in the proof of Theorem
2 shows that as A — © we need only worry about those
M, equal to I'. The above argument shows this can only
happen for terms in the first sum. (J

Note that T = 2°7®, where p is the smallest number of
binary digits in any of the numbers L, 2L, - - -, JL,. De- 59
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termining this quantity in general is probably best carried
out by direct calculation. We now turn our attention to
JI’s of the form 2* — 1 or 2¥ + 1.

® Theorem 5
Let J = 2° — 1 for some k = 2. Then m = Ak and deg
HX)=Q2"- 1) - 1.

Proof  Clearly the 8 of Lemma 2 is k and L, = 1. Thus
m = Ak for some integer A and

A—1

_ ik
L= 2%
i=0

We note that because of the structure of L,(L, = 1), for
each integer p,

k-1 )
oL, = U a2'L,,

i=0

where

k—1
p= Z aiZi.

i=0
Thus, to calculate U it is enough to work with the
quantities L,, 2L,, 4L,, - - -, 2“"'L,, since they are the
minimal elements with respect to =*. A bit of reflection
shows that we can adapt the inclusion-exclusion formula
of Theorem 3 to read as follows:

k—~1

k-1
U= Z Mm,z‘Lk - 2 Mm,z"Lx. 2,
i=0 i1,1,=0
1,<i,

Furthermore, note that M = 2" Thus we

get that

m2"L,, - -,2%L,

deg H(X)

"1+ Z()z"‘“ 1y

c=1

I

-1 -1.0

® Theorem 6
Let J = 2* + 1 for some k = 1. Then m = 2pk for some
p = 1and deg H(X) = 2™ — 1) — 2“*" - 1)*.

Proof Since 2* = —1(mod J), 2* = 1 (mod J), and 2* #
1 (mod J) foralli =1, -, k, it follows that the 8 of
Lemma 1 is 2k. Thus, m = 2pk for some p = 1. Further-
more, L, = 2 ~ 1. Thus, L, looks like

p-pairs
000  I1-1 000 111 eoeere 000 111,

We now show that all nonzero muitiples of L, smaller
than JL, = 2" — 1 have a binary expansion that looks like

SHU LIN AND GEORGE MARKOWSKY

WWWW - - - Ww,

p-pairs
where W is a k-bit string and W is the complementary k-
bit string. Furthermore, we show that every such string is

a multiple of L,. Let M be an integer between 1 and 2* —
1, and consider that

q q q
MLl = (Z 2(1() (2k _ 1) - Z 2a‘+k + 2ao+k _ 2 2“‘,
i=0 i=1 i=0
where g = k — 1. Note that in order to perform the sub-
traction we write 2°% ag

agtk—1

> o2+
i=0

and then cancel out the 1’s corresponding to the 2*°s and
add in the 1. Considering the two cases a, = 0 and o, = 1
shows that we get a string of the form WW. Since ML,
looks like p copies of ML , the result follows.

Note that 2°L, has the same form with W being a string
of k zeros. Since there are 2" strings of the type WW and
2k multiples of L, less than JL,, we see that there is a one-
to-one correspondence between such strings and multi-
ples of L, < 2™ — 1. Since L, <* 2™ — 1, we can ignore
M- 1= JL, in calculating U, ., since we need only con-
sider those multiples which are minimal with respect to
=*. Note that the above argument shows that L 2L,,
3L,,: , 2k L, are all minimal with respect to <*.

Rather than using the inclusion-exclusion formula of
Theorem 2 to calculate U, ,, we calculate it directly. Sup-
pose OL, =* M for some integers ® < 2* and M. Write
OL, asa b a,b, where each a,, b, is a string of k

121850, * " 4, p’
dlglts and where W <* a,and W <* b, for all i.

LetA={hl=h=2"—1and 3 O withOL, <* H}. We
consider each # to be in the form a b a,b, - - - a,b,. For
each g between 1 and 2¥ — 1, let

= th el b, = g}

i=t

where

P
MN»b
i=1

is the number whose binary expansion has a 1 in the jth
place iff each b, has a 1 in the jth place of its binary expan-
sion. Assume g has s 1's in its representation. Then each
b, must have at least those s I’s. In order for N, = g, we
must pick the remaining digits of the b, so that some b, has
a 0 in each of the k — s positions where g has a 0. If we
focus our attention on a particular position and try to fill it
in all b,'s simultaneously, we see that this can be done in
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2° — 1 ways. Thus the b;s can be picked in (2° —~ 1)**
ways. Each a, must contain W, but there are no re-
strictions on the remaining bits. Thus we see that [A | =
(2° = D*™* (2°)* and, since there are (k/s) strings g having
s I's, we see that

U= |A| = Z (I;) (ZP _ l)k—8(20)8 = (2ﬂ+l _ l)k. 0

8=0

5. An example
The following example illustrates the code construction
and decoding described above, as well as Theorem 5.

Let m = 4. The polynomial X* ™' + 1 = X" + 1 can be
factored as follows:

XP+1=00+X)1+ X+ X+ X°+ X,
Thus, J =3, L = 5, and
cX)=1+X+X*+Xx°*+ x"

The Galois field GF(2*) is given by Table 1, where « is a
primitive element and isaroot of p(X) = 1 + X + X*, i.e.,
p(@) = 1 + o + o' = 0. Note that a' = 1. The polynomial
o(X) has

a, a2, a3, a4’ (26, a7’ aG’ a9, all’ a12, als, aM

as roots.

Next, we form the polynomial H(X). The polynomial
H(X) has o as a root if and only if " is a root of o(X)
and, for every nonzero descendant 4’ of &, & is also a
root of o(X). For example o' is a root of o(X). The non-
zero descendants of 12 are 4 and 8, and both o* and o are

roots of o(x). Thus, o' is a root of H(X). The roots of
H(X) are

1 2 3 4 6 8 9 12
a,a,x,a,a,a,a,a ,
and we see that deg H(X) = 8 as predicted by Theorem 5.

The roots o', a®, o*, and o® are conjugates, and they have
the same minimal polynomial

m(X) = (X + o)X + &*)X + )X + o).
Using Table 1, we obtain
m(X)=1+X+ X"

3 6 12 24 9 . .
The roots a”, a’, @, a” = o’ are conjugates and their
minimal polynomial is

my(X) = (X + &’ )(X + &®)X + «B)(X + o)
=1+X+X+X +x
Therefore,
HX) = m,(X)m (X)
=1+ X'+ X5+ X" + X8
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Table 1 The Galois field of 2* elements (GF(2") with p(a) =

dta+l1=0(ra =a+l),

0

1

a

o

a3

o =a+1

a =ala+1)=a +a

o =ald +a)=a + o

a =ad+a)=a'+a* =" +a+ 1

a® =aldd+a+D=a'+a’+a
=d+ta+tat+l=ao+1

o =ald® +1)=d +a

al°=a(a3+a)=a‘+a2=a2+a+l

o' = a(d? +a+1)=a3+a2+a

a"=a(a +a +a)=a +a +a =+ +a+l

am=a +a +al+a=d+dltrat+ta+tl

= +a* +1
sd+d+ta=d+atatl=a+1
=ad'+ta=a+ta+l=1

a &

Table 2 Location numbers.

0 1 2 5 6 7 8
aaaasa‘aaaaaaaaaa

v=(1001 001 001 0 0 1 0 0
=0 1001007100 1 -0 0 1 0
=001 0010010 0 1t 0 0 1

which is the generator polynomial of the code ¢ with

length 15, and
oX) = (1 + X°* + X HH(X).
Therefore, o'(X), Xo(X), X *o(X) are code polynomials in
C.

Also, H(X) divides X** + 1 and
XP 41 =(1+X"+ X+ XHHX).
Thus,
GX)=1+X"+X°+ X",
The generator polynomial of the code C (the dual of C) is
gX) = X'Gx™

=1+X+Xx+ X

Thus, C is a (15, 8) cyclic code.

To decode C, we need to find parity-check sums that
are orthogonal on error digit e,,. The vectors correspond-
ing to o(X), Xa(X), and X*c(X), which are code vectors
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Figure 1 One-step-majority-logic decoder.

Table 3 Resulting vectors after adding parity-check digit.

"o "2 "13 "4 T3 Iy 75

Majority
gate

ot e ol o o a¥
gw,=(100100100T10 01 0O
w=(1010601001001 0 0 1 0O
w=(00100T100T1O0O0T1 0 01

Table 4 Resulting vectors after permutation.

® 0 1 2 3 4 7 8 9 10 11 12 13 14
a a a a a «o a5 (Za a a a a a a a a

@w= 00 110000101 01001
w= (0000001000101 11
w= ©1 001 11001 00O0O0O0T1

Table 5§ Vectors after deletion of parity-check digit.

o 1 2 3 4 L3 9 10 11 1213 14
a a a a a o de a’ (18 a a a a a o

1 o1 0 0 1)
I o 1 1 1)
00 0 01

z,= 0 1 1 0 0 0 0 1
0 0 0 0 1 0
01 1 1 0 0

0
0 0 0
0 I o
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in C, are shown in Table 2. Adding an overall parity-
check digit to each of these vectors, we obtain the vectors
in Table 3. These are code vectors in C, (the extension of
C). Now, we apply the affine permutation

Z=aY + o™

to permute the components of u,, u,, u,. The resultant
vectors are given in Table 4. Deleting the overall parity-
check digit from the above vectors, we obtain the vectors
in Table 5, which are vectors in C. We see that these vec-

. . . 14
tors are orthogonal on the digit at location « . Let
r= (r0r1r2r3r4r5r8r7r8r9r10rllrl2rl3rl4)

be the received vector. Then the parity-check sums or-
thogonal on error digit e,, are

=r z,=r®r,®&r,&r,®&r,dr,
A=rz=r,®r, ®r,®r,or,
=r,@r,®r,®r,®r,®r,.

>
il

-

N

The decoding circuit is shown in Fig. 1. The code is
capable of correcting any single error over the span of 15
digits. The code € has minimum distance 4 (the generator
polynomial has weight 4). Thus, the code is capable of
correcting single errors and detecting any double errors.

6. Summary

In this paper we have investigated a class of one-step ma-
jority-logic decodable codes. A method of decoding these
codes has been presented. Combinatorial expressions for
determining the dimensions of these codes have been de-
rived. These codes are effective compared with other ma-
jority-logic decodable codes [3, pp. 176-177]. Most im-
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portant, they can be decoded in one step with a single
majority-logic gate. A list of these codes is given in Table
6.

For short length, these codes are comparable with
BCH codes in efficiency. For example, there exists a (63,
36) one-step majority-logic decodable code which is ca-
pable of correcting 4 or fewer errors. The corresponding
4-error-correcting BCH code of the same length is a (63,
39) code which has 3 information digits more than the
one-step majority-logic decodable code. For large block
length, the codes presented in this paper are much less
efficient than the BCH codes of the same length and the
same error-correcting capability.

Due to their decoding simplicity, the codes presented in
this paper may find applications in data communication
systems where cost and decoding speed are critical.
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