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ABSTRACT. For a complete lattice L, in which every element is a
join of completely join-irreducibles and a meet of completely meet-irreducibles
(we say L is a jm-lattice) we define the poset of irreducibles P(L) to be the
poset (of height one) J(L) W M(L) (J(L) is the set of completely join-irreduc-
ibles and M(L) is the set of completely meet-irreducibles) ordered as follows:
a <P(L) b if and only if a €J(L), bEM(L), and a £ ;b Fora jm-lattice
L, the automorphism groups of L and P(L) are isomorphic, L can be re-
constructed from P(L), and the irreducible factorization of L can be gotten
from the components of P(L). In fact, we can give a simple characterization
of the center of a im-lattice in terms of its separators (or unions of connected
components of P(L)). Thus P(L) extends many of the properties of the poset
of join-irreducibles of a finite distributive lattice to the class of all jm-lattices.

We characterize those posets of height 1 which are P(L) for some jm-
lattice L. We also characterize those posets of height 1 which are P(L) for a
completely distributive jm-lattice, as well as those posets which are P(L) for
some geometric lattice L.

More generally, if L is a complete lattice, many of the above arguments
apply if we use “join-spanning” and “‘meet-spanning” subsets of L, instead of
J(L) and M(L). If L is an arbitrary lattice, the same arguments apply to
“join-generating™ and “meet-generating” subsets of L.

This paper concerns the problem of representing lattices by means of closure
operators on partially ordered sets of height 1. Every relation between two sets
R € X x Y induces a Galois connection between the power set of X and the
power set of Y, and hence determines a lattice L(R) of closed sets (in X,
say). If L is a finite lattice, and X and Y are the sets of join- and meet-
irreducible elements of L, and R is the relation €, then L = L(R). This
idea extends trivially to complete infinite lattices in which every element is a
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join of completely join-irreducibles and a meet of completely meet-irreducibles
(which we have called jm-lattices). We call R the poset of irreducibles and de-
note it by P(L). More generally, if L is complete, the same arguments apply

if X and Y are “join-spanning” and “meet-spanning” subsets of L. If L is
an arbitrary lattice, the same arguments apply if X and Y are ‘join-generating”
and “meetgenerating” subsets of L. If X and Y are invariant under all
automorphisms of L, then in all three cases the automorphism group of the
bipartite directed graph associated with R is isomorphic to the automorphism
group of L.

In this paper, we examine how properties of L can be described in terms
of properties of the relation R. The main object is to characterize those relations
which arise from certain kinds of lattices. '

Not every relation comes from a lattice, and §1 concerns the problem of
describing those which do. We consider this problem for each of three possible
choices: L a jm-attice, L a complete lattice, L an arbitrary lattice. Certain
of the results can be expressed conveniently in the language of topological spaces.

In §2, we characterize the relations arising from completely distributive
jm-lattices (which are isomorphic to lattices of order ideals of some partially
ordered set). In this case, the relation R provides an alternative to the well-

“known “poset of join-irreducibles,” and shares many of its properties.

In §3, we do the same for geometric lattices. By applying this condition
and its dual, we obtain a characterization of complemented modular lattices of
finite length.

In §4, we show how the direct factorizations of a jm-lattice L can be
derived immediately from the poset of irreducibles of L. In particular, L is
directly irreducible if and only if P(L) is connected (as a graph). This leads to
an elementary description of the center of a lattice in terms of its separators (or
unions of connected components of P(L)).

Finally, in §5 we give a number of examples which illustrate the material
presented in the earlier sections.

The poset of join-irreducible elements P of a finite distributive lattice L
contains L in a coded form, since L can be reconstructed from P. Further-
more, the automorphism group of P is isomorphic to the automorphism group
of L, and the direct factorization of L can be gotten directly from the con-
nected components of P. However, P is naturally isomorphic to the poset of
meet-irreducible elements of L, i.e., the meetdrreducible elements do not con-
tain any information about L not already contained in P. Thus one might sus-
pect that in the nondistributive case one would need to include both the join-
irreducible and meet-irreducible elements of a lattice in any representation of it
which would have the same properties as the poset of join-irreducibles of a finite
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distributive lattice. The results in this paper show that such a representation can
be found, and that we only need to add the meet-irreducible elements to the
join-irreducible elements.

1. Basic results. Let X be a set; by 1X| we shall denote the cardinality
of X and by 2X we shall denote the power set of X. Let n be anon-
negative integer; by n we shall mean the set {1,--,n}. Thus 0 =g. Note
that 27 # 2", Weuse W for disjoint union. We will usually write < for set
inclusion an-c.l < for proper set inclusion. If X isan object with some sort of
structure, by Aut(X) we shall mean the set of all automorphisms of X, ie.,
bijections which preserve the given structurc. We shall use 0 (/) to denote the
least (greatest) element of a lattice L if it exists. Asusual O (/) is the empty
join (meet).

DEFINITION 1. Let L be a lattice and X <L.

(a) We say that X join-spans (meet-spans) L if 0¢EX (I & X) and for
every wEL there exists X,, <X such that w =sup X,, (w = inf X,;). Note
L join-spans (meet-spans) itsclf. We will use this X,, notation throughout.

(b) We say that X join-generates (meet-generates) L if for every w€ L
there exists a finite nonempty subset X,, of X suchthat w=supw (w=
inf X,,). Note that L join-generates (meet-generates) itself. We will use this

- X,, notation throughout.

(c) If L is a jm-attice, by J(L) (M(L)) we denote the set of all complete-
ly join-irreducible (completely meet-irreducible) elements of L. Clearly,’ J(L)
(M(L)) join-spans.(meet-spans) L.

REMARK. We note that any lattice with no infinite chains is a jm-lattice.
More generally, any lattice such that it and its dual are both compactly generated
is a jm-lattice (see [3, p. 43, Theorem 6.11).

DEFINITION 2. Let P be a poset. By alink in P, we meana finite
sequence of elements of P, say ay, * ", @pm> such that, for i€m—1, 4; <
4., OF g >a;,,. We introduce an equivalence relation of P. Let x,y EP;
we say that x ~y if there exists a link a4, ", 4, such that a4, = x and
a,, =y. We define the components of P to be the equivalence classes of P
with respect to ~. A poset is connected if it has exactly one component.

DEFINITION 3. (3) By a bipartite digraph D, we meana triple (X, Y, 4),
where X and Y are sets, XN Y =g, and A<X xY. A iscalled the set
of arcs. If S<X, by Ou(S) we mean {y €Y]| there exists x €S such that
(x, y) EA}. Similarly, if T<Y, by In(7) we mean {x € X| there exists
y €T suchthat (x, ) EA} If x€X [y €Y] we write Ou(x) [In(»)]
instead of Ou({x)) [In({y )]. We will use the term bidigraph to stand for bi-
partite digraph.
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We will usually think of bidigraphs as being posets with the ordering w >
z iff wEY, zEX, and w € Ou(z). It is clear in view of Definition 2 what
we mean by components of D.

By an automorphism F of D we mean a bijection F: XU Y—XUY,
such that F(X) =X, A(Y) =Y, and (x,y) €A iff (Fx, Fy)€A

(b) Let X join-generate the lattice L and Y meet-generate L. Pick
two disjoint sets X', Y* which have bijections #,: X— X' and ;: Y—Y".
Then by the X, Y bidigraph, Of(X, Y, L), of L we mean the bidigraph
(X', Y', A) where (x,y) €A if and only if #] 1(x) £i3'(»). Clearly
Qf(X, Y, L) is defined up to isomorphism. To avoid cumbersome notation we
will usually suppress i, and i, and identify X' with X and Y’ with Y.

In all cases where we use this convention it will be clear how to rewrite the state-
ment in terms of X', Y',i,, and i,. Note that in general the group of poset
automorphisms of Qf(X, Y, L) is not isomorphic to the group of bidigraph auto-
morphisms of Qf (X, ¥, L). )

" (c) Let L be acomplete lattice, X a join-spanning subset of L, and Y
a meet-spanning subset of L. By Q(X, Y, L) we mean the bidigraph (X*, Y*,
A) as in (b) above. We will adopt the same convention in this case concerning
X*, i), etc. In this case, the group of poset automorphisms of Q(X, Y, L) is
isomorphic to the group of bidigraph automorphisms of Q(X, ¥, L).

(@) If L is a jmattice, by the poset of irreducibles P(L) we mean
QU(L), M(L), L).

(e) Any bidigraph (X, Y, A) induces a Galois connection between 2X
and 2Y asfollows. If S< X, then S* <Y is defined as Y — Ou(S); while
if T<Y, Tt <X is defined as X —In(7). Note that S* and T* are the
sets associated with S and T by the usual polarities *defined on the relation
X xY-A4 (see [1,p. 122]).

REMARK. Note that for all S <X, T<Y, Ou(S*!) = Ou(S) and In(T**)
= In(T). Further, note that for all S,, S, <X (forall 7\, T, < Y) Ou(Sf*)
< Ou(seh) (In(T}*) < In(73*) iff St <S3t (Tf* <TJ*), since Oulx)<
0u(S) (In(y) < In(7)) iff x €S*t (y€TT).

The next several theorems concern the problem of reconstructing L from
Qf (X, Y, L). It can be shown L 2 {S*?|S <X is finite and nonempty }. The
same result holds if L is complete, but here S < X is any subset of X. We
shall however show that L 2 {Ou(S)|S < X is finite and nonempty }. The proofs
are essentially the same, but we prefer the second approach, since Ou(S) can be
calculated more easily than S*'. Recall that we are suppressing ;, i, X', and
Y'.

We will use the convention that whenever we write P(L), (X, ¥, L) or
Qf(X, Y, L) the entity in question is defined, ie., X, Y and L are of the
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correct type. Thus if we write P(L), we mean to imply that L isa jm-lattice,
etc.

TueoreM 4. Let L be a lattice, X joingenerate L, Y meet-generate
L, and Qf(X, Y, L)=(X, Y, £).

(@) Let Ry = {Ou(S)IS isa finite nonempty subset of X ) The map
f: L—R, givenby f(a)= Ou(X,) = Ou(Xa‘*) is a poset isomorphism, where
X, is as in Definition 1. Thus R, is a lattice isomorphic to L. The join of
two elements in R, is simply their union.

(b) Each element of Aut Of(X, Y, L) (bidigraph automorphisms) extends
naturally to an element of Aut R;. More precisely, the map F: Aut X, Y, L)
— Aut R, given by F &)(0u(S)) = g(0u(s)) = Ou(g(S)) is an injective group
homomorphisin.

(c) The image of the map F above is the subgroup (' h € Aut L
such that h(X) =X and h(Y)=Y (where fisasin (@)} Thus F isa
group isomorphism iff for all h € AutL, h(X)=X and h(Y)=1Y.

ProOF. Throughout the proof we will simply write Qf instead of
Qof(X, Y, L).

(a) Observe that for all a €L, J{;t ={x€X|x<a}) In general, for
any finite nonempty S <X, s*t = {x € X|x <sup,S}, and hence sup; S
= sup,S**. Thus a <b iff f@< f(b). Thus f is injective. Furthermore,
f is surjective since for any finite nonempty S <X, f(sup,S) = Ou(S A
Ou(S). Clearly,if S, and S, are finite and nonempty subsets of X, then so
is S, US, and Ou(S;) L Ou(S;) = Ou(S, U S,). Thus the join of two ele-
ments in R, is their union.

(b) Since g commutes with Ou and In, it commutes with * and ¥
and F(g): R, — R, and F(g) isisotone. F(g) has an isotone inverse
F(g™!), and hence F(g) € Aut R;. F is clearly a group homomorphism.

Suppose F(g) = F(h). Then, for each x €X, Ou(g(x)) = Ou(a(x)). But
g(x) = inf, {g(x) }* = inf,, {h(x)}* = h(x). Thus g=h on X. Foreach y €
Y, g(y) = sup {g(») ¥ =supe({y}") = sup h({y ) = sup, RN Y =
h(y). Thus g=h and F is injective.

(c) Let ' =F(g) for g€ Aut Of and h = fYn'f € Aut L. Hence,
K=mf. If x€X, h(x)=f""Hf@x)= £1H'(Oux)) = £~ (Ou(et:) =
g(x) €X. Thus h(X) =g(X) = X. Similarly, for y €Y, r) =) =
£ ©Ouly 1) = £ (Ou{g(») ') = &(y). Thus h(Y)=gY) =Y.

Let h € Aut L and suppose that h(X) =X and h(Y) =Y. In view of
our identification convention, h € Aut Of. It is straightforward to verify that
Fy=mf".

REMARK. If we were to rewrite Theorem 4 in terms of the closure operator
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on X (say), then part (2) would read “the map f: L — {S*'|S < X is finite
and nonempty } given by f(a) =X, :f is a lattice isomorphism carrying meets
into intersections”. In part (b), the map F should be given by F(g)(S*t) =
g(s*1) = g(5)*t. Everything else remains the same.

With very minor modifications, Theorem 4 states the properties of Q(X, Y, L)
(P(L)) for a complete lattice (jm-lattice) L. We shall merely state the theorems
and omit the proofs, since they are almost identical to the proof of Theorem 4.
For a complete lattice L, a join- (meet-) generating subset is a join- (meet-)
spanning subset, while the converse is false. In fact, by removing 0 from any
join-generating set we get a proper subset which join-spans L. For any jm-lattice
L any join- (meet-) spanning subset must contain J(L) (M(L)). Thus for jm-
lattices (especially finite lattices) P(L) consists of “fewer” (<) elements than
Q(X, Y, L) and Qf(X, Y, L) (for all appropriate X and Y). Note that if
L is a jm-lattice and h € Aut L, then h(J(L)) =J(L) and A(M(L)) = M(L).

THEOREM 5. Let L be a complete lattice, X a join-spanning subset of
L, Y a meet-spanning subset of L, and Q(X, Y, L)=(X, Y, %).

(@) Let Ty = {Ou(S)IS < X). Then Ty, isa complete lattice (join being
union) and the map f: L — T, given by f(a) = Ou(X,) = Ou(x?*!) isa
lattice isomorphism.

(b) Themap F: Aut Q(X, Y, L)— Aut I, given by F(gXOu(s)) =
£(0u(S)) = Ou(g(S)) is an injective group homomorphism.

(c) The image of the map F above is the subgroup {fhf ~'lh € Aut L
such that h(X) =X and W(Y)=Y} Thus F isa group isomorphism iff for
all h€Aut L, h(X)=X and h(Y) =Y.

THEOREM 6. Let L be a jm-lattice and P(L) = (J(L), M(L), %).

(@) Let Ty = {Ou(S)IS< X} Then Ty isa complete lattice (join being
union) and the map f: L — Ty given by f(a) = Ou(X,) = Ou(X, :*) isa
lattice isomorphism.

(b) The map F: Aut (L) — Aut I'; given by F(g)}Ou(S)) = g(Ou(s))
= Qu(g(S)) is a group isomorphism.

The rest of this section is devoted to characterizing those bidigraphs which
are P(L),Q(X, Y, L) or Of(X, Y, L) for appropriate L, X, and Y. If L
is the trivial one element lattice we allow P(L) and Q(X, Y, L) to be &. The
next theorem shows that any bidigraph gives rise to a complete lattice and de-
scribes a natural join-spanning set and a natural meet-spanning set.

THEOREM 7. Let D = (X, Y, A) be a bidigraph, f: X — 2Y be given

by f(x)=0ux), g: Y —2Y begiven by g(y) = Ou({y M, and Lp=
{Ou(S)IS < X}. (When we write Ou: X — 2%, we mean the restriction of Ou
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to the subset of 2% consisting of all singleton sets which for simplicity we -
identify with X. We treat In similarly.) Then:

(3) Ly isa complete lattice;

(b) f(&x) - (&} join-spans Ly and g(Y)- {Ou(X)} meet-spans Lp;

(c) there exists an injective bidigraph homomorphism \ from
QLp. f(X) - {2}, 8(Y) - {Ou(X))) into D;

(d) D=Q(A,, A,, L) iff \ is an isomorphism. Equivalently, D =
Q,, 4, L) iff Ou: X —2Y isinjective, Ou(x) <% forall x €X, In:

Y — 2% s injective, and In(y)#2 forall y€ Y.

ProorF, (a) Clearly L p Is closed under arbitrary union and has a least
element @= Ou(g). Hence it is a complete lattice.

(b) Clearly, f(X) - {2} join-spans Ly. Let S< X We claim that
Ou(S) = inf,, p(&(5*) — {Ou(X)}). If Ou(S) = Ou(X), this is clearly true. If
Ou(S) < Ou(X), Ou(X) ¢ g(S*). Thus we claim that Ou(S) = inf;, p&(S*). We
know that Ou(S) = Ou(S*t) and it is easy to see that Ou@S*") = inf,, &S,

(©) Let X: Qp, f(X) = (@), &(Y) ~ {Ou(X)) = Q — D be such that,
for a €f(x), Ma) €f7'(a) and, for b Eg(Y), Nb) Eg~'(b). Clearly, A is
injective. A is a bidigraph homomorphism since

b Za iff EAB) # F Q@) I Ou(x - In(A®))
D

# OuQ@) iff Aa)€X -In(AB) iff A() € Oup(a)).

(@ If A is an isomorphism, then clearlly D = Q If D=Q(4,,4,,1),
then Ou: X — 2% isinjective (thus so is f), In: ¥ — 2X js injective (thus
s0is £), Ou(x) # & for all x €X (thus €& f(x)), and In(y)# & for all
YE€Y (thus Ou(X) ¢ g(Y)). Thus f(X)~ {2} =f(X) and g(¥)- {Ou(X)}
=g(Y), and since both f and g are injective it follows that A is surjective,
and hence an isomorphism.

It is sometimes convenient to employ topological language to describe par-
tially ordered sets. Thus all partial orders on a set correspond naturally in a 1-1
fashion with all Ty -topologies on the same set (see [1, p. 117]). Similarly, all
quasi-orders on a set correspond in a 1-1 fashion with all topologies on the same
set. We now reformulate Theorem 7(d) in topological terms.

COROLLARY 8. Let D = (X, Y, A) be a bidigraph, The following are
equivalent:

(@ D=Q(, 4, 4,).

() {Ou(x)},cx isa subbase of a Ty-topology on Y, Ou(x) #& for
al yEY, and In: ¥ —2X s injective.

(©) {In(») hey isasubbase of a Ty-topology on X, In(y) #& forall
YEY, and In: Y —2X s injective.
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Proor. We will only show that (a) — (b). The rest of the proof is sim-
ilar. From Theorem 7 it follows that we need only show that U, ¢, Ou(x) =¥,
and that, for all y,,y, €Y, y, #y,, there exists x € X such that either
¥; €0u(x) and y, € Ou(x), or y, ¢ Ou(x) and y, € Ou(x). UJ e xOulx)
=Y follows from the fact that In(y) #& for all y € Y. Furthermore, if there
existed y,,y, €Y, y, #y,, such that y, € Ou(x) iff y, € Ou(x) for all
x € X, it would follow that In(y,) = In(y,), contradicting Theorem 7.

REMARK. If L and L' are dual lattices, then it is clear that Q(4,, 4,, L)
is anti-isomorphic to Q(A4}, 4;, L) for appropriate A4,, 4}, A,, 4;. In par-
ticular if L is a jm-lattice, L is self-dual iff P(L) is self-dual. Conversely, if
L and L' are complete lattices and g: Q(4,, 4,, L) (= Q) — Q(4), 43, L)
(= Q") is an anti-somorphism, then the map fe LQ — LQ:, given by
£;(Ou(a)) = Ou(g(a)t) forall A< 4, is an anti-isomorphism of lattices.

We now derive a characterization of those bidigraphs which are isomorphic
to P(L) for some complete jm-lattice L.

THEOREM 9. Let D = (X, Y, A) be a bidigraph. Then the following are
equivalent: ’

(@) D =P(L) for some complete m-lattice L.

(b) Forall x€ X, if A<X issuch that Ou(x) = Ou(A), then x €A.
Similarly, forall y €Y, if 'Y issuch that In(y) = In(T"), then y €T.

ProoFr. If D = P(L), then Ou(x) is completely join-irreducible in Lj
where join is union. Hence if Ou(x) = Ou(A), then x € A. Let L' be the dual
of L, and hence a jm-lattice. Thusif In(y) =In(l"), y €T.

If (b) is true, Ou(x) #& for all x €X since Ou() =& but x ¢g.
Further, Ou: X — 2Y is injective. Similarly, In(y) #& forall y €Y and
In: Y — 2% is injective. Hence, by Theorem 7, D = Q(4,,4,,L) fora
complete lattice L. But (b) implies that A, consists exactly of the completely
join-irreducible elements of L, while A4, consists exactly of the completely
meet-irreducible elements. Thus D = P(L).

The following theorem characterizes Qf (X, Y, L). Since the proof is
quite similar to the proof of Theorem 7 (one needs to be careful about the finite-
ness of certain sets) we will omit it.

Tueorem 10. Let D = (X, Y, A) be a bidigraph. The following are
equivalent:
() D=Qf(4,, A,, L).
(i) (@) Ou: X — 2Y is injective,
®) In: Y—2Y isinjective.
(c) If S <X is finite and nonempty, there exists a finite nonempty
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T<Y such that In(T) = In(S*).

() If T<Y is finite and nonempty, then there exists a finite non-
empty S <X, such that Ou(S) = Ou(T"). (Note that if D is finite, then (c)
and (d) imply that € Image Ou N Image In, where Ou and In are restricted
to finite nonempty sets.)

2. Completely distributive jm-lattices. In this section, we characterize those
bidigraphs which are P(L) for some completely distributive jm-lattice L. We
begin by observing that, if P is a poset, then D(P) (the set of all order ideals)
is a completely distributive jm-lattice, where J(ID(P)) = {/,|x EP}({, =
{y€Ply<x})) and MDP) = M |x €EP}(M, = {y EPly #x)). Further-
more, f: J(D(P)) — M(D(P)) given by f({J,) = M, is a poset isomorphism.
Conversely, if L is a completely distributive jm-lattice, let f: L — D(J(L))
be given by f(x) =J,. It is easy to see that f is an isomorphism of lattices.
To show that f is an isomorphism, we only need assume that L is a complete
lattice such that every element is a join of completely join-irreducibles and in which
a A (supyeaw) = sup,ca@Aw) forall a€L and A<L

THEOREM 11. Let L be a jm-lattice and P(L) = (J(L), M(L), ®). Then
the following are equivalent: :

(a) L == D(R) for some poset R. ,

(b) Forall y € M(L), y € Ou((M(L) = M, 1 (5y0uN) = gofTy-

ProoF. (a) — (b). For simplicity identify L with D(R). Let y, €
M(L) and xq €J(L) be such that x, = f~(y,), where f is the map described
in the paragraph preceding this theorem. Clearly, T, 0= Ou(S), where § =
{w €JL)I0u(W) € Nyein(yy)Oulx) ). Let ro ER be such that x, =J, €
JDR)) and y, =M,, €MDR)). Let x €In(y,); then x =J,. Since
x €y, It follows that r > r,, ie., x >x,. Thus Ou(x) > Ou(x,), whence
xo €S. But y, € Ou(x,) < Ou(S) =Ty,

(b) — (). Let R=J(L). Let h: L~ D(R) be given by h(a) =
{p ER|p €a}. Clearly, a < b iff h(a) <h(b), and hence h is injective.

~ Foreach q €M(L), let u, € (M(L) = Nyepn(y)Oulx))! be such that

q € Ou(¥,). Then Ou(y,) < T, < Ou(u,), ie., T, =Ou(u,). Sucha u, is

unique by Theorem 9. v

Let ¢: M(L)—> J(L) be given by ¢(g) =u,. Clearly, ¢ is injective.
Furthermore, since, for each ¢ EM(L), q € T, it follows that for each x €
J(L), Ou(x) = U,cou)T, = Ou({u,lq € Ou(x)}). Hence, by Theorem 9,
x=u, for some ¢ € Ou(s). Hence ¢ is surjective.

Finally, let w € D(R). Then clearly h(sup W) > W. Suppose ¢ € hisup W).
Let ¢ =¢"(f),q#¢t andhence ¢ Psup W. Let wE W besuch that ¢ €
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Ou(w). But Ou(r) = Ou((Y ~ ﬂxe,n(q)Ou(x))*) < Ou(w), since w € In(g).
But Ou(f) < Ou(w) implies that + € W. Thus h(sup W) = W, h is surjective
and hence an isomorphism.

3. Geometric lattices. A geometric lattice is a semimodular point lattice of
finite length. In this section we characterize geometric lattices in terms of their
posets of irreducibles. Although we use the same terminology used by other
authors (e.g. Crapo and Rota [2]) our characterization is different. As opposed
to the usual arguments, we allow our circuits to be infinite, and use induction on
height instead of size. The circuits correspond to sets of the form In(y), as
opposed to minimal dependent sets (see [2, Chapter 4]). We use the following
definition,

DEFINITION 12. A matroid consists of a set Y together with a family
{Cy Jaca of nonempty subsets of Y, called circuits, such that:

(a) no proper subset of a circuit is a circuit;

®) if yeCc,n Cg» then C, UCs— {y} contains a circuit (a # f).

THEOREM 13. Let L be ajm-lattice, and P(L) = (J(L), M(L), &). Then
the following are equivalent:

(a) L is a geometric lattice,

(b) J(L) together with {In(y)iy € M(L)} forms a matroid and L is of
finite length, Le., there exists an integer k > 0 such that If nN<T,<T,<

is a sequence of subsets of M(L) for which In(T,) <In(T,)<-*-, then
both sequences are finite and contain no more than k elements. |

(c) Ou(x;) € Ou(x,) forall x, x; €EJ(L),x, #x, (L is a point lattice).
Forall S <J(L), if x;,x, €J(L) are such that Ou(S) <Ou(SV {x, D <
OuS U {x,]), then Ou@S U {x; ) =0u(S U {x, ). (L satisfies the Steinitz-
MacLane exchange axiom.) L s of finite length, ie., there exists an integer k »
0 such that if §; <8, <S8, <:-+ isasequence of subsets of J(L) for
which Ou(S,) < Ou(S,) < :*, then both sequences are finite and contain no
more than k elements.

PROOF. That (a) implies (b) follows in a straightforward manner from the
standard material on geometric lattices (see [1, Chapter IV]). Using the same
material one can easily see that (2) and (c) are equivalent. We now prove that
(b) implies (a).

Clearly, all the elements of M(L) are copoints. We now prove the follow-
ing fact: If p, q €EM(L),r,s €J(L) are such that r € In(p) N In(g) and s €
In(g) - In(p), then there exists ¢ € M(L) such that s € In(r) < In(p) V In(g)
= {r}. The proof we will give of this fact uses some ideas of a proof presented by
Curtis Greene at the Advanced Science Seminar in Combinatorial Theory at Bowdoin

THE FACTORIZATION AND REPRESENTATION OF LATTICES 195

College (Summer 1971).. However, in our case we do not assume that In(p) is
necessarily finite.

The proof is by induction on the length of the maximal chain from p A ¢
to I We start the induction with d(p A g, I) = 2 (where d(a, b) = length of
longest chain between a and ), since d(p A q, 1) > 1. Since J(L) together
with {In(»)ly € M(L)} form a matroid we know that there exists ¢ € M(L)
such that In(f) € In(p) U In(g) = {r}. We claim that s € In(¢). First we show
that t=>p A q. If NEJ(L) issuch that A<pA g, then A €¢In(p) and
A& In(g) and hence XA ¢ In(f). Thus ¢ > A. Butsince L is of finite length,
pAg=sup(AEJL)N<pA q}, and thus t >pA g, since ¢ is a copoint.
If s¢In(f) then ¢>s, and hence ¢t >sv(p A q). But s&In(p), ie, p>
s and g #s. Thus p>2sv(pA @) >pAq But dlpA g, 1] =2 implies
that sV(p A ¢)=p and hence that ¢ > p, which is impossible since they are
both copoints. Thus s € In(¢).

Assume the statement is true for d[p A q, I] =m » 2 and suppose
dlp Aq, I) =m + 1. Using the property of being a matroid we see that there
exists t, € M(L) such that In(t,) <In(p) U In(g) - {r}. If s €In(t)), we
are done. Suppose s € In(t,); then pA t, >p A gq, since t; >pAq (as
above), p A t; >s and pAqgPs Thus d[p At,]] Sm. Note that r€
In(p) - In(t,). Since In(r,) % In(g), there exists y € In(r) N In(p) ~ In(q).
Now by the induction hypothesis, there exists ¢, € M(L) such that r € In(t,)
<In(p) U In(t,;) = {y}. Note that s € In(t,) (since s & In(p) and s ¢ In(t,)
by assumption). Furthermore, qA t, >q A p since t, 2pAt, >pAg,
y<qAt, and y&qA p. Thus d[g At,, I] <m, and by the induction
hypothesis there exists ¢, € M(L) such that s € In(f;) < In(g) V In(t,) = {r}
< In(g) V In(p) = {r}, and the claim is proven.

We now show that all the elements of J(L) are points. If this were false,
there would exist a, b €J(L) such that a <b, ie., Ou(a) <Ou(b). Let ¢ €
Ou(g) and p € Ou(b) — Ou(a). Then b € In(p) N In(g) and a € In(g) - In(p).
Hence by what we just proved there exists ¢ € M(L) such that a € In(f) < In(p)
U In(g) = {b ). But this is a contradiction, since ¢ € Ou(g) <Ou(b) and b €
‘In(f). Thus L is a point lattice.

Our next step is to show that for all r EJ(L) (recall 7 is a point), r Ka
implies that » V @ covers a for any a € L. Suppose r%a, but r va does
not cover a forsomeé a €L. Let b besuchthat rva>b>a and b
covers a. Then for some s €J(L), b =s V a There exist p, g € M(L) such
that p>»sVa pPr, g>a, qPr, q#s Thus r€ln(g) NIn(p) and
s € In(g) — In(p). By what we proved above there exists ¢ € M(L) such that
s€In() <In(p) VIn(g) - {r}, ie., t$s, t>r, and t>pAqg>a But
this means that ¢t > rV a » s, contradicting the fact that ¢ $s. Hence rva
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covers a forall a €L such that r Ka

We now show that for any x, y €L, if x covers x A y, then xV y
covers y. Let r €J(L) be such that x =rv(x A y). Then r Ly since x &
y. But xVy=rVv(xAy)vy=rvy, whichcovers y. Thus L is (upper)
semimodular by Corollary 1 of {1, p. 81].

REMARK. Curtis Greene suggested Theorem 13 and implied thatitisa
known result. However, the author has not been able to find any references to
it.

4. Factorization of complete lattices. Some of the following can be general-
ized to arbitrary lattices with universal bounds using a combination of spanning
scts and generating sets. Since the results for complete lattices convey the basic
idea and are more elegant, we will concentrate exclusively on complete lattices
in this section.

THEOREM 14. Let L be a complete lattice. Then L =M, N, (N,
a complete lattice of course) iff there exist A;, A, <L such that A, join-
spans L, A, meetspans L, Q(A,, A, L) = WacaKar where, for all a € A,
bEK,NA, and b E€Ou(@)=a €K, (K, isthe union of connected com-
ponents), and there exist {Ayy Yocar {Aaz Jaca Such that forall a €4, A,,
join-spans N,, A,, meet-spans N,, and Q(N,, Ay, Ayz) = K,

PROOF. Necessity. L is complete, so 0, J € L and consequently there
exist 0, JEN, forall a €A. Let {4,, },ca and {4,;},ea be such that
A, joinspans N, and A,, meetspans N, forall a €A, andlet A3, =
{x €My pNglxg =0, # a and x, €A,y ). Define Az, similarly, but re-
place 0 by I We will identify L with the product of the N,s for simplicity.
It is easy to see that 4, = U,caA2; joinspans L and 4, = U,ca42,
meet-spans L, and that b€ A4,,a€A,,bE Ou(g) = there exists a; €A
such that b € 48,2 and a € AZ,1. From this it follows that Q(4,, 4,, L)
= U,caKe With Kq =A%, UAS, and K, = Q(Ae,, Aoz, No)-

Sufficiency. Let T be as in Theorem 6, S, =K, N 4,, and N, =
r, n2% forall a €A. Since T, and 25 are complete lattices where join
corresponds with union, so is N,. )

Consider the map ¢: I'y — Il N, defined so that the ath component
of ¢(S) is SNS, for a €A, ie., &S)=(SNS,)a€A. Weclaim that ¢
is well defined. Let Ag <A, be such that §=Ou(4dg). Let W, =4;NK,
for a € A. Since K, is the union of connected components, Ou(W,) =S N
Sq €EN,. Thus ¢ is well defined. ¢ and ¢! are clearly isotone in both
directions and since, for all SET,, S = U,ea(S N S,), it follows that ¢ is
injective.
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Since I'; is complete, with sup being union, it is easy to see that ¢ isalso
surjective, and hence a lattice isomorphism. Since L 2T, the theorem follows.

ReEMARK. From Corollary 1 of [1, p. 68] it follows that if a complete lat-
tice has an irreducible factorization then this factorization is unique. The following
theorem shows that every jm-lattice has an irreducible representation and shows
how to obtain it from P(L).

THEOREM -15. Let L be a jm-lattice.
(a) L is decomposable iff (L) is not connected.
(b) The irreducible factors of L correspond to the connected components

of P(L).

ProoF. (a) If P(L) is not connected, it follows from Theorem 14 that
L is decomposable. Conversely, if L is decomposable it follows from Theorem
14 that there exist a join-spanning subset A; of L and a meet-spanning subset
A, of L suchthat Q(4,, 4,, L) is not connected. Suppose that P(L) is
connected; then P(L) lies in one component of Q(4,, 4,, L), call it K. Now
either A, ~K#3 or A, ~K+#g (actually from Theorem 7 it follows that
both sets are nonempty). Suppose a €4, —K # &. Then Ou(a) N M(L) =4,
but this means that a < b for all b € M(L), ie.,, a=0. But 0 € A4,, by
definition of join-spanning subset (the case 4, =K #& is dual). This contradic-
tion shows that P(L) cannot be connected.

(b) Let the components of P(L) be {K,},ca. Applying Theorem 14 we
see that L is a product of the lattices corresponding to the K,’s. Furthermore,
from the first part of the proof we see that each of the factors is indecomposable
since each K, is connected. Thus we have gotten the unique irreducible factor-
ization of L.

DEFINITION 16. (a) The center of a complete lattice L is the set of ele-
ments of L which have one component I and the other 0, under some two
factor direct factorization of L.

(b) Anelement x €L, ajm-attice, is a separator of L if forall p €

J(L), g EM(L) with p £gq, either p<x or x<gq.

REMARK. Crapo and Rota {2, Corollary 1 on p. 12.11] prove that an ele-
ment x of a relatively complemented lattice with no infinite chains L isin the
center of L iff x isa separator of L. The following corollary of Theorem 15
shows that this is true for any jm-lattice. In particular, it is true for all lattices
with no infinite chains.

COROLLARY 17. Let L be a jm-lattice and x €EL. Then x € C(L) (the
center of L) iff x is a separator of L.

PROOF. It is clear from Theorem 15 that x € C(L) iff B, NK, =@ or
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B, NK, =J(L)NK, (where B, = {a €J(L)la <x}) for each component K,
of ALY(a€A). If pq (pE€J(L),q EM(L)) then p, q € Ko, for some
@ €A. If B, NKoy =g, x<q, whereasif B, NK, #g, p €B,, ie.,
D SX

REMARK. Reasoning as in Corollary 17, it is easy to see that for jm-attice
C(L) = 2%, where X is the set of components of P(L).

5. Examples.

ExampLE 1. Let L be the lattice corresponding to the following Hasse
diagram:

Then P(L) is the following graph:

¢ b a d
e b ¢

Thus [Aut(P(L))] =2 = JAut(L)l and L is indecomposable.

Finally, observe that T, =T, =T, =g and T, = {g, b, d}. Thus, by
Theorem 11, L is not distributive, which of course is no surprise in this case.
Furthermore, Y = {a, b, ¢, d} together with {In(y)ly € Y} is not a matroid
since In(d) < In(a). Hence, by Theorem 13, L is not a geometric lattice.

EXAMPLE 2. Let L be represented by the following diagram.

I

e I
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Then P(L) is represenied by the following diagram.
c d a

a b c
P(L) has two components, so that P(L) has two indecomposable factors cor-
responding to the diagram:

o {c} o {o,d}

and 3 {a}

o o¢

Note |Aut(P(L))| =1 = | Aut(L)|. Observe that T, = {a}, T, = {c}, and
T, = {4, d}. Thus, by Theorem 11, L is distributive. By Theorem 13, we see
that L is not geometric, since In(d) < In(a).

EXAMPLE 3. Let L be represented by the following diagram.

a b c
c Then P(L) can be represented as m
c b a

"Thus L is indecomposable and |Aut(P(L))| = 6 = |Aut(L)|. Further, note

that T, =T, =T, =g, and hence L is not distributive by Theorem 11. The
pairs (M(L), {In(»)ly €M(L)}) and (/(L), {Oulx)lx EJ(L))) are clearly
matroids and thus it follows from Theorem 13 that L {s a complemented modu-
lar lattice.

REMARK. Additional examples and applications of P(L) can be found in
[4] and [5]. The author would like to acknowledge many interesting discussions
with Professors Garrett Birkhoff and Curtis Greene, as well as the many helpful
suggestions they made. The author is also grateful to the referee for the time he
devoted to increasing the clarity of this paper.




200 GEORGE MARKOWSKY

BIBLIOGRAPHY

1. G. Birkhoff, Lattice theory, 3td ed., Amer. Math. Soc, Colloq. Publ,, vol. 25, Amer.
Math, Soc., Providence, R. 1., 1967. MR 37 #2638.

2. H., H. Crapo and G.-C. Rota, On the foundations of combinatorial theory: Il.
Combinatorial geometries, (preliminary edition), M. L. T. Press, Cambridge, Mass., 1970,

3. P. Crawley and R, P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Engle-
wood Cliffs, N. J., 1973.

4. G. Markowsky, Some combinatorial aspects of lattice theory, Proc. Houston Lattice
Theory Conf. , Univ. of Houston Press, 1973, pp. 36-138.

s, , Combinatorial aspects of lattice theory with applications to the enumera-
tion of free distributive lattices, Ph, D, Thesis, Harvard University, Cambridge, Mass., June
1973,

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE,
MASSACHUSETTS 02138

Current adress: Computer Science Department, IBM T. J. Watson Research Center,
P. O. Box 218, Yorktown Heights, New York 10598




