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ABSTRACT

In the predecessor to this paper, “Uncovering Antibody Incidence Structures,”
Markowsky and Wohlgemuth presented a model which allowed one to calculate best
possible solutions for the relation between individuals and antibodies given certain sets of
tests each of which is analyzed simply for the presence or absence of a reaction. In this
paper, we show that many of the concepts and theorems of the first paper generalize to the
case where we actually try to compare the strengths of various reaction tests. As one might
expect, the resulting model has a greater ability to detect the presence of antibodies than
the model presented in the first paper. Furthermore, the additional information generated
by the model described in this paper allows one to present a fairly concise definition of
the best possible solution for a given amount of reaction test data.

INTRODUCTION

The fragment-cofragment model presented in this paper is an elaboration
of the model considered in [1] which makes use of “fragments” to determine
antibodies labeling individuals in a reaction matrix. We consider a set § of
individuals on which tests are performed. It is the purpose of our model to
determine, from available data, a set & of antibodies and which antibodies
in the set react with antigens in the various individuals in . This is given
formally by a binary relation GC$X@ where i G a if and only if antibody «
reacts with some antigen in individual i. Thus G is considered fixed but
unknown, and we seek to determine G. The model in [1], referred to in this
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paper as the “Boolean model,” was also directed at the problem of de-
termining € and G but involved only zero-one reaction matrices as data.
The present model allows us to make use of differences in reaction strength.

Reference [2] gives a brief account of the history of modeling immuno-
genetic factors and relates the various approaches. The reference list in {2] is
complete to the best of our knowledge. The first section in [1] relates the
problem we are addressing here to the more general models. Our develop-
ment here parallels the development in [1], and we use much of the same
notation, which we list (concisely) for convenience. Section II of [1] con-
nects this notation with immunological terminology in more detail. The
discussion section at the end of this paper also gives verbal descriptions
(with some imprecison) of the definitions we make.

We use the following conventions:

(1) “iff” means “if and only if.”

(2) If nis an integer, n={1,2,...,n}.

(3) If X is a set and y is an element, X +y denotes XU {y} and X~y
denotes X —{y}.

(4) If S is a set, | S| denotes its cardinality.

(5) If BCXXY and SCX (TCY), then SB={y€Y|xBy for some
XEX)} (BT=(x€X|x By for some y€T}). For x€EX (yEY) we write xB
(By) instead of {x}B (B{y}).

(6) If BCXXY and SCX (TCY), then B—S (B—T) is just BN[(X—
S)X Y] (BN[XX(Y—T))). For singleton sets, we drop the set braces as
before.

(7) When dealing with antibodies we assume that Ga, § for all a€@.
Throughout we assume n=|$| and m=|&|.

(8) If XCY then X'=9—-X.

(9) Asin 1]}, let C, ={{i, S)|i€s, |S|<k}.

(10) For any binary relation E with domain 4, define M(E, k)CIxC,
by iM(E, k) j, S iff iENjE SE. This gives the Boolean reaction matrices
used as data in [1].

DEFINITION 1

For any binary relation E with domain § and i, j€9, SC9, let
A(E, i, j, S) [or just A(i, j, )] =iENJE—SE=iEN(jE—SE). Define the
reaction tables R(E, k) with:

rows labeled by individual i €9,
columns labeled by pairs (j, $)> €C,, and
A(i, j, S) the entry in row i and column {j, S).

Thus A(G, i, j, ) gives all antibodies jG—~SG in the absorbed serum
{j,S§> in common with antibodies /G labeling individual /. We see that
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A.(G, .i’ J» S)#J iff iM(G){j,S); but that R(G, k) gives all distinct an-
tibodies entering into a reaction, whereas M(G, k) gives only whether or
not a reaction occurs.

DEFINITION 2
For | S| < k—1 define

F(G, i, j, S)={t€$|A(i, j, S)#D, A(i, j, S+1)=D) and
C(G, i, j, S)={t€3|A(, j, S)=A(, j, S+1)).

. Nonempty F and C are called k-fragments and k-cofragments respec-
tively. F(G,i, j,S) may be denoted by F, F(G) or F(i, j,S) in certain
contexts, and similarly for C(G, i, j, S).

RESULTS
THEOREM 3

(a) F(l’ j’ S)= r-]aEA(i,j,S)(;a'

®) CG, J, 8)= UaeA(i,j.S)Ga‘

(©) A(, j, S)={a} for some a iff C(i, j, SY=F(i, j, S)=D iff F(i, j, S)
=C(i, j, )= Ga for some a.

@) C(jJj, S)={i€l|iM{j, S))}.

Proof. (a): Theorem 6 in [1].

(b): If :Ga for some a€A(i,,S), then a@A(i,/,S+1), so that
C(i,j,8)2UGa. If t& UGa for all a€A(i, j, S), then A(, JsS+t)=
A3, 4, 8), s0t&C(i, j, S).

(c): Follows immediately from (a) and (b).

(d): Clear. ]

In this fragment-cofragment model the values of F(i, J>»S)and C(i, j, S)
are considered as data from which we wish to determine G. The fragments
F(i, j, §) are obtainable from the zero-one reaction matrices M (G,k)asin
the Boolean model. For a fixed i, j, S with a positive reaction iM{j,S),
F(i, j, S) is the set of individuals ¢ which give a negative — IM{j,S+1t)
when G is absorbed out of {j, ). Individuals ¢ in C(, j,S)—F(G, j,S)
are those that reduce the antibody content in common between row i and
column ¢/, §) by absorption, but do not reduce it to the empty set. To put
it another way, C(i, j, S)’ gives those individuals ¢ that have no antibody
label ‘(in 1G) in common with the set of antibodies A(i, j, §) accounting for
a positive reaction in row i, column {j, §) of M; presumably absorption
by these 1 would lead to no reduction of reaction strength. To provide input
for the model then, an experimenter would need to decide which reactions
in row i, column ¢, ) are positive, and for each of these which reactions
in row i, column {j, S+1¢) are as strong as those in row i, column <, $.
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Note that since A(i, j, S+1) is a subset (perhaps proper) of A(i, j, S), we
avoid comparing reaction strengths of different antibodies. An example of a
situation where this model might apply is in cell mediated lympholysis,
where reactions are given in per cent lysis and cytotoxic T-lymphocytes play
the role of antibodies.

Notice that in Theorem 3(d) the particular cofragments C(j, j, S) are
the columns of the zero-one data matrix M.

We now proceed to the idea of detectability.

LEMMA 4
For aE@, C(G—'a,i,j, S)gc(Gyisj9S)'

Proof. Let t&C(G,i,j,S) and BEA(G—a,i, j,S). Then B*a and
BEA(G,i, j,S)=A(G,i, j,S+¢t), so that —1(G—a)B. Hence A(G—
a, i, j,8)=A(G—a,i, j, S+1t). Therefore t& C(G—a, i, j, S). [ ]

DEFINITION 5

An antibody a €@ is called k-fc-undetectable ( k-fragment-cofragment un-
detectable) if G and G— {a} give the same sets F(i, j, §) and C(i, j, S) for
| S| < k— 1. If necessary, we can designate G so as to avoid ambiguity. An
antibody is called fc-undetectable ( fragment-cofragment undetectable) if it is
k-fc-undetectable for all k. The terms k-fc-detectable and fc-detectable have
the expected meaning.

In this paper we will refer to a (k-)fc-undetectable antibody merely as
(k-)undetectable. Antibodies undetectable in the Boolean model will be
called “Boolean undetectable” in contradistinction to the present model.

THEOREM 6

(a) a €@ is undetectable iff for every i, j, kEGa there exists BEQ such
that {i, j, k} CGBC Ga. Thus by Theorem 3 of [1), if a is undetectable, then it
is Boolean undetectable.

(b) if a is undetectable, then |G a| > 4.

(©) a is detectable iff {a}=A(i, j, $)—A(i, j, S+k) for some i, j, k, S.
Furthermore, S can be taken as Go'.

Proof. (a): Sufficiency: By Theorem 3 of [1] the condition implies that
the F are not changed. Suppose t€C(G, i, j,S)—C(G~a,i, j, S). Then
tGaand ~1G 8 for all s€EA(G—a, i, j, S). Thus there cannot exist 8 such
that {i, j,t} CGBCGa.

Necessity: Let i, j, k be given in Ga. Then a€A(G, i, j,Ga’) 44 =D and
D— {a}#, since a is undetectable. Note that i, jEGBCGa for all BED
—{a}. Assume that - kG for all BED—{a}. Then A(G, i, j,Ga’'+k)U
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{a}=D, so k&C(G—a,i, j,Ga’), but kEC(G, i, j, Ga’), contradicting the
fact that a is undetectable. Hence i, j, kEGBCGa for some S.

(b): Clear by (a).

(c): Suppose a is detectable and set S=Ga’. Then there exist i, j, kEGa
such that for each B with GBCGa, {i, j, k} ¢GB. Clearly a €A(, J, S).
Further, if a#B€A(i, j, S) then GBCGa, so that - kGB, whence B
A(i, j, S+k). Thus {a}=A(i, j, S)—A(, j, S+k).

Conversely, by the condition, k€C(G, i, j, S), but k&€ C(G—a, i, 7 S),
so a is detectable. ]

Theorem 6 shows that the fragment-cofragment model is somewhat
sharper in its ability to detect antibodies than is the Boolean model. A
fragment F(i, j, S) or cofragment C(i, j, S) is determined by various reac-
tion strengths in a single row (i) of, say, per cent lysis in a reaction table. In
order to use cofragments it is therefore necessary to have an experimental
procedure that makes comparison of reaction strengths for various columns
and the same row meaningful. It is much more natural experimentally to
obtain a meaningful comparison between various rows for the same column
(reagent). However, detectability in models using the latter comparisons is
no sharper than in the Boolean model.

THEOREM 7
Let T be any set of G undetectable antibodies. Then:

(@) F(G)=F(G-T);

(®) C(G)=C(G-T);

(c) a&T is G-detectable iff a is G— T-detectable;

(d) There is a unique set T* C@ such that (a) and (b) hold Jor T=T* and
every element of @— T* is G— T*-detectable. We call G— T* the reduction of
G.

Proof. (a): If a €T is undetectable, then « is Boolean undetectable, so
that M(G)=M(G—T) by Theorem 4 in [1]; hence F(G)=F(G-T).

(b): By Lemma 4, C(G,i,j, S)2C(G-T,i, j, S). Let keC(G—
T.i,j,SY. Then A(G-T,4i, j,S)=A(G—-T,i, j,S+k), so that A(G, i, j, S)
—A(G,i, j,S+k)CT. Suppose a €EA(G, i, j, S§)—-A(G,i, j, S+k) is picked
so that Ga is minimal with respect to set inclusion. Then i, j,k€Ga, so
there is some B such that i, j, k€ GBC Ga, since a €T is undetectable. But
then BEA(G, 1, j, S)—A(G, i, j, S+k), contradicting the minimality of Ga.
Consequently, A(G,i, j, S)=A(G,i, j, S+k), whence keC(G,i, j, SY.
Therefore C(G, i, j, S)=C(G-T,i, j, S).

(c): Suppose a is G-detectable. Then {a} =A(G, i, j, S)—-A(G,i, j, S+k)
for some k by Theorem 6. Since A(G—T, i, j, S$)=A(G,i, j,$)—T and
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A(G-T,i, j,S+k)=A(G,i, j,S+k)—T and a&T, we have {a}=A(G—
T,i, j,S)—A(G-T,i, j, S+k), so a is G— T-detectable.

Conversely, suppose a € T is G-undetectable but G — T-detectable. Since
a is G— T-detectable, there exist i, j, kEGa such that for all B€@—T, if
i,j,k€Gf, then GBZGa. Since a is G-undetectable, there exists 8’'€T
with i, j, k€GB’ and GB’C Ga. Pick B’ with minimal |GB’|. Since B’ €T,
B’ is undetectable. Thus there exists 8” €@ with i, j, k€GB” cGB’. This
implies that 8” € T, which contradicts the fact that | GB’| was minimal.

(d): By (a), (b), and (c), T* is the set of G-undetectable antibodies. [

DEFINITION 8

For a given §C2%—(J, 9} define G5 CIxS by iGs X iff i€X. For a
given G, k define Sol(G, k) to be the set of all S such that F(8),; = F(Gs)
=F(G) and C(8)4r =C(Gs)=C(G).

Sol(G, k) is called the kth solution space in the fragment-cofragment
model. Sol(G, w)=Sol(G, k) for k=n—1. If every element of Gg for S&€
Sol(G, k) is detectable, we call § a detectable solution. We will often just
use S rather than G for conciseness.

LEMMA 9

For §,,5,C2°—(,9}, i,j€9, SCY, we have A(S,US,,i,j,S)=
A(Spi’j’S)UA(SZ’i’j,S)‘

Proof. Straightforward. B
THEOREM 10
If§,,8, €Sol(G, k), then $,US, ESol(G, k).

Proof. By Lemma 16 of [1], F(5,)=F(5,)=F(5,US,). That C(§,)=
C(8,)=C(85,U$S,) follows from Lemma 9 and the definitions. [ |

THEOREM 11

Sol(G, w) has a unique detectable solution.

Proof. Since Sol(G, w) is nonempty, Theorem 7 implies that it contains
a detectable solution. Let U, ¥V €Sol(G, w) be such that each element of U
and V is U- or V-detectable respectively. Let X€ U. Then for some i, j, k,
and S=X', we have {(X}=A(U,i, j,S)—AW,i, j, S+k). Then X=
CcW,i, j,8)=C,i, j,S)=u Y, for Y,€A(V,i, j, S). In order to obtain a
contradiction assume that each Y, CX. Then there is some Y, such that
k€Y,CX, so that for rt€X— Y,, we have Y, €A(V, i, j, S+1)—A(V,i, j, S
+t+k), that is, keC(V,i, j, S+t). But A(U,i, j, S+t)=AU,i, j, S)—
1Gy, =AU, i, j,S+k)—tGy=A(U,i, j,S+t+k), so k&C(U,i, j, S+1).
The contradiction shows that some ¥, =X, that is, X €V, so that UC V. By
symmetry VC U. [ ]
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The foregoing shows that there is a natural solution to the problem of
determining G from sets of fragments and cofragments, namely, the reduc-
tion of the largest element in Sol(G, k), which we denote by Z*(G, k).
3*(G, k) “converges” to the unique detectable solution in Sol(G, ) as k is
increased (more becomes known).

We now turn to the problem of computing 2*(G, k) from the set of
k-fragments and k-cofragments.

LEMMA 12
(a) For t&F(i, j, S)#D,

F(i, j,S)CF(i,J,S+t)CC(i, j,S+t)CC(i, j,S).
() Ift&F(i, j, S)=C(i, j, S)=GCGa, then
F(i, j,S+t)=C(i, j,S+t)=Ga.
Proof. Trivial. n

Lemma 12 applies to the case where G=3*(G, k). It follows that the
only elements lost when we consider k-fragments and co-fragments instead
of I-fragments and cofragments for all /< k are those Ga such that S+¢ can
no longer be found disjoint from Ga, that is, those Ga such that |Ga|> 9|
—k. We use the notation Ga to refer either to G, X for X & HESol(G, k)
or to the reaction range of some a in the original G, since G and G, are
indistinguishable by /-fragments and cofragments for /< k. This notation
makes it somewhat easier to relate the current discussion to earlier theo-
rems.

DEFINITION 13

For any k let Q, be the set of X C9 for which we can find i, j, S such that
X=F(i, j, 8)Y=C(i, j,S) for |S|<k—1 plus the set of all YC3 such that
F(i, j,S)CYCC(, j,S) for |S|=k-1.

LEMMA 14
GCGy,.
Proof. Every Gais some X or Y in Definition 13 by Theorem 3. [ ]
THEOREM 15
Let
H=9, — (Y€, |forsome x, y,T, x,yEY, YNT=S and - F(x,y,T)
CYCC(x,y,T)}.

Then X*(G, k) CHESOl(G, k). In particular, S*(G, k) is the reduction of H.
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Proof. Let X€Z*(G, k). We can call X=Ga by assuming without loss
of generality that G=Gz.(, «)- Since a is detectable, a €A(, j, S) for some
i, j, S, where | S| can be taken <k—1. Then F(i, j, S)CGaCCy, j,S) by
Theorem 3, so that Ga€Q,. If Ga&H, then for some xy, T, x,yEGa,
GanT=%. Thus « €A(x, y, T), but then again by Theorem 3, F(x,y,T)
CGaCC(x, y, T). The contradiction shows Ga €Z(G, k). Hence Z*(G, k)
CH.

In order to show HESOl(G,k) we need to show F(Gy,i,j,S)=
F(G,i, j,S) and C(Gy, i, j,S)=C(G,i, j,S) for all i, j, S. Since we can
take G=Gye.x)and Z*(G, k) C H, we see that A(G, i, j, S)CA(Gy, 1, j, S)-
If YEA(Gy,i, j,S), then by the definition of H, F(i, j, S)CYCC(, j, S).
Hence in the case that A(G, i, j, S)=& we see that C(i, J, $)=, so that
MGy, i, j,S)=D (no such Y can exist). If A(G, i, j, S)*d, then
F(Gy, i, j, S)CF(G,i, j, SYCC(G, i, j, S)CC(Gy, i> J, S). But if Y€E
A(Gy, i, j,S), then F(i, j,S)CYCC(, ), S) so that F(Gy,i, J,S)=
F(G,i, j, S)CC(G,i, j, S)=C(Gys, i, j, S) by Theorem 3. ]

DISCUSSION

The fragment-cofragment model uses as data the results of tests between
individuals i€ and reagents (j, S» where S={s,..., 5} C9. {j,S> can
be thought of as s, anti-j with s,,..., 5, absorbed. In order to use the
fragment-cofragment model we must have k>2, whereas the Boolean
model applies when & > 1. For a fixed i, j, S where individual i and reagent
{j, 8> give a positive reaction, the fragment F(i, j, S) is the set of all ¢
where i and ¢ j, S+1) give no reaction; the cofragment C(i, j, S) is the set
of all t where i and {j, S+1) give either no reaction or a reaction less than
that with ¢j, S)>. Fragments can be calculated from a zero-one reaction
matrix and are the same as in the Boolean model. In order to calculate
cofragments it is necessary to have experimentally meaningful comparisons
between the reaction strengths of various reagents with the same individual.
The sets of fragments and cofragments for all possible i, j, S are the data
from which we can compute @, the set of antibodies, and G, the antibody
incidence relation or labeling of individuals with antibodies.

The condition under which an antibody is undetectable in the fragment-
cofragment model [given in Theorem 6(a)] is even more restrictive than the
condition in the Boolean model and would hardly be expected to occur in
practice. Except for undetectable antibodies, & and G are uniquely de-
termined (Theorem 11) if k is large enough. For any fixed k> 2 there is a
best possible solution =*(G, k). Further, the sequence =*%(G,2), £%(G,3),...
“converges” to the uniquely determined solution 2*(G, w) of Theorem 11.
The foregoing statements are precisely analogous to those in the Boolean
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model. The content of the statements is different, however, since the notion
of detectability is different in the two models.

Theorem 15 provides a basis for calculating 2*(G, k) for any k>2,
namely, deleting undetectable unions from the set H described. This algo-
rithmic calculation has advantages and a disadvantage when compared to
the algorithm in the Boolean model. An advantage is that we have a bound
on the reaction ranges Ga of those antibodies a responsible for an entry
A(i, j, §) in the reaction table, namely F(i, j, S)CGaCC(i, j, S). In par-
ticular, we now have an idea of how far away the solutions =*(G, k) may
be from their limit, and we know when an antibody is found (the limit is
reached), namely when F(i, j, S)=C(i, j, S). A disadvantage is that the
computational procedure may require more time.

This paper contains the mathematical description and analysis of the
fragment-cofragment model for uncovering @ and G. A tutorial paper for
experimental immunogeneticists explaining the computational use of the
model is in preparation.
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