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ABSTRACT

Many important CAD data bases exist only in wire frame (three-
dimensional edge and vertex) or projection (two-dimensional planar
view) form. In order to exploit the many advantages of computer-
based solid modeling, the data descriptors of the objects in these data
bases must be converted to solid form. This paper surveys methods for
performing the transformation automatically, describes one polyhedral
algorithm in some detail, and explores the degree of automation that is
both possible and practicable.

INTRODUCTION

The early evolution of the mechanical design process has been characterized
by a transition from makers-of-things (craftsmen) to makers-of-drawings (de-
signers) [Jones 1980]. This transition allowed a change from the evolutionary
build-it-and-see approach of the craftsman to the separation of trial-and-error
from production provided by the mechanical drawing. The drawing made it
possible to divide up production work, thereby increasing productivity, and
made possible the design of things that are too big for a single craftsman.

The two-dimensional drawing as the medium for expressing a designer’s con-
cept of a three-dimensional mechanical design has evolved into the stylized art
form of today’s mechanical drawings with:

 Standardized multiple views of an object showing projections of the object’s
boundary,
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* Auxiliary views showing details and allowing nonstandard viewing direc-
tions,

» Coded line types (e.g., heavy, light, solid, dashed) to express concepts such
as occultation,

« Symbolic representations of features (e.g., a tapped hole, or the radius of a
circle),

« Symbolic representation of machining requirements (e.g., surface finish),
+ Dimensions,
» Tolerances, and

» Textual annotations, including “not to scale”” and “do not measure.”

These stylized representations of objects could, in turn, be interpreted by skilled
humans who could envisage, from the two-dimensional drawings, the three-
dimensional nature of the object. This visualization, coupled with given dimen-
sions, allowed some manual verification of the correctness of the design and its
ability to meet its functional requirements. However, the production of draw-
ings was expensive and itself error prone, particularly as the complexity of the
design increased.

The first descriptions of computer aided design (CAD) systems appreciated
the ability of a computer to interpret detailed functional semantics of a design.
For example, SKETCHPAD [Sutherland 1963] allowed representation of rela-
tionships between objects (e.g., a kinematic linkage) or geometric constraints
(points to be evenly spaced on a circle). However, the first generation of CAD
systems in production use did not exploit this potential and were essentially
electronic draughting systems working still with only two-dimensional projec-
tions. These first generation systems greatly increased the productivity of de-
signers and, through some additional functions, such as projection of lines
between views and the ability to overlay drawings, helped to reduce errors.

A major extension to these electronic two-dimensional draughting systems in-
troduced the third-dimension. Designs could now be described by their three-
dimensional edge outlines known as their wire frames. Graphics systems offered
real time rotation and scaling of images on the screen, and designer productiv-
ity was again increased.

The CAD system technologies described above are based on the representa-
tion of an object by its natural edges or, in the case of curved surfaces such as
spherical or cylindrical, by their silhouette or other artificial edges and attend-
ant vertices. These systems can give high performance visual feedback to the
designer for his interpretation of the object. However, the object description
data do not contain sufficient semantic information for immediate generation
of volume properties of the object. The edge and vertex data do not indicate
explicitly the location of surfaces and hence it is not known explicitly where a
surface lies and where there is solid material. Thus we are dealing with com-
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puter assisted draughting systems which constitute the major fraction of in-
stalled CAD systems today.

A major increase in the semantic content of the design data base came from
the explicit representation of objects as solids [Braid 1974, Baumgart 1974].
Surfaces are now defined explicitly and have associated inward and outward
directions; edges have an associated direction to the interior of a face. Data now
allow derivation of properties of objects as volumes. For a single object, proper-
ties such as volume moments can readily be found. For multiple objects,
questions of interference, both static and dynamic, can be answered, and kine-
matics and dynamics of spatial mechanisms can be analyzed. In principle, the
data can be used to generate tool paths for machining and fabrication opera-
tions and to generate programs for assembly robots. The combination of repre-
sentation of objects as solids, and relationships between objects, can allow
automatic investigation of all the properties of a product that depend on its vol-
ume geometry; this provides the basis for integrating computer-aided design
with manufacturing.

A parallel extension to the CAD process is the concept of structured design. A
complex object design may be expressed recursively in terms of subcompo-
nents, forming a directed acyclic graph (often a tree) structure with the most
primitive objects occurring at the terminal nodes. The combination of hierar-
chical design approach with primitive volume elements was proposed by Braid
[Braid 1974]. Grossman showed the power of writing programs to express the
tree structure [Grossman 1976], and Requicha has developed the theory of
structured representation of objects [Requicha 1980].

The recognition of the advantages of solid modeling of objects, and the ability
to represent them, leads to the problem of the user interface to a solid modeling
system. Braid proposed a set of primitive volumes from which more complex
objects could be synthesized using operations of volume addition and subtrac-
tion [Braid 1974]. Baumgart also proposed objects of translation or rotation of a
planar shape [Baumgart 1974]. More recent work has led to solid modeling sys-
tems that have extended the class of representable objects by introducing sur-
face patches. These surfaces are of particular interest to the aerospace and
automobile industries and allow representation of complex curved surfaces that
are at least C2 continuous.

The discussion above has concentrated on the historical sequence of com-
puter-based design from the viewpoint of mechanical engineering. In other do-
mains different design symbolisms may be used. For example, in architecture, a
design may be expressed in terms of elevations and floor plans, with symbolic
descriptions of standard components such as doors and windows. Although
similar advantages occur from the use of volume representations (e.g., weight,
load capacity, bill of materials), the same use of volume primitives may not be
directly applicable as the means of design specification. For example, an archi-
tectural system may use an outline of the floor plans with symbolic descriptions
of wall thicknesses, doors, windows, and so on, as input, and use extrusion op-
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erators to go from symbolic design to volume representation [Borkin et al.
1978]. Also, an architect may be more interested in the spaces than the solids.

In the domain of mechanical design, analysis, and manufacturing, the impor-
tance of solid modeling is firmly established [Wesley 1980]. New design systems
are coming into production use that are based on design with, and representa-
tion of, solids. However, there remain many existing nonsolid design systems
and also extensive data bases that could benefit from conversion to solid form.
The existing nonsolid data bases may be in the form of:

« Paper based two-dimensional engineering drawings,
« Computer based two-dimensional engineering drawings, and
e Computer based three-dimensional wire frames.

Hybrid systems that mix nonsolid and solid forms, either as extensions to exist-
ing nonsolid systems or vice versa, also need to provide tools for conversion to
solid form.

In this paper we will explore the problems of conversion of these nonsolid
data to solid form. It should be recognized that, quite apart from any inherent
algorithmic complexity in the conversion process, the original loss of semantic
information incurred by the designer in mapping his solid design concept into a
nonsolid data representation leads to problems in the reconstruction process. In
particular, a two-dimensional or a wire frame representation does not necessar-
ily correspond to a unique solid object, and reconstruction algorithms must be
able to handle the case of multiple solutions.

In the sections that follow, we will first discuss the definition of solid objects,
their boundaries and their projections. Then we will compare the existing ap-
proaches to solutions, discuss the problems remaining, and, finally, propose an
approach to a complete solution.

DEFINITION AND REPRESENTATION OF SOLIDS

Although humans have a good intuitive grasp of the basic concepts of geome-
try, the algorithms used in computer-based geometry become surprisingly com-
plex when full generality is sought. Formal definitions are needed more to
provide a language for precise discussion than to allow detailed mathematical
proofs.

The basic definitions of the point sets spanned by a solid polyhedral object
and its faces may be taken from the wire frame algorithm given in [Markowsky
and Wesley, 1980).

 Definition 1. A face is the closure of a nonempty, bounded, connected, co-
planar, open (in the relative topology) subset of E3 whose boundary is the
union of a finite number of line segments.

» Definition 2. An object is the closure of a nonempty, bounded, open subset
of E? whose boundary is the union of a finite number of faces.
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These definitions may be extended to cover objects with “smooth” curved sur-
faces. These latter are the general class of objects allowed for the discussion be-
low, but it will be seen that most of the work has been restricted to planar
surfaced objects.

The aim of these definitions is, on the one hand, to avoid empty sets and
dangling edges and faces, and on the other hand, to allow generality in the topo-
logical class of objects that can be represented. Notice that it is not assumed
that an object is the closure of a connected set. This allows objects that consist
of disjoint “solids™ or even objects which intersect at edges, and so forth. One
can argue that this last case, illustrated in polyhedral form in Figure 1, does not
represent a “real” object, but in practice all sorts of strange objects can appear.
In particular, in the process of synthesizing a manufacturable design from geo-
metric primitives, the designer may wish to go through intermediate stages that
are not manufacturable. Thus, rather than place constraints on the designer,
these definitions are intended to handle the most general cases possible.

CSG Trees, Volume, and Boundary Representations—Definitions of objects
in terms of point sets are clearly not suitable for direct computation, so other
forms of representation are required. Requicha has formalized two approaches:
the constructive solid geometry (CSG) tree and the boundary representation

Figure 1. A typical polyhedral object.
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[Requicha 1980]. The two approaches will be used here for the classification of
model representation. A CSG tree describes the recursive synthesis of composite
objects from subobjects in terms of their relative positions (expressed as rigid
body coordinate frame transformations), and primitive point set operations of
union, intersection, and difference. A terminal subobject is an instance of a
member of a small set of parameterized primitive volume objects. The set of
primitive objects may include, for example, cuboid, cylinder, cone, and torus,
and may be represented by the intersection of half spaces. The operations of
union, intersection, and difference are defined by regularized set operators that
guarantee that composite objects satisfy Definition 1 and Definition 2 above.

A special case of the CSG tree is volume filling, is generally recursive, and
uses a single type of oriented volume primitive. One example, using a cube and
binary subdivision, is the octree [Doctor and Torborg 1981]. These representa-
tions are approximations to objects with arbitrary surface orientations and are
therefore orientation dependent. None of the work on volume reconstruction
discussed below is based on volume filling.

The boundary representation of a solid object is an object description in terms
of its boundary, that is, its faces, edges, and vertices and their connectivity.
Clearly the boundary representation must satisfy certain rules in order to be
able to represent the object shown in Figure 1 and to reject boundaries that do
not enclose volumes, for example, the surface of a Klein bottle.

The basic ideas of boundary representation are that the boundary should be
closed (i.e., the boundary cannot have a boundary), orientable (i.e., the object
must have a consistent inside and outside), and should not self-intersect. Differ-
ent authors have taken different approaches to the use of these ideas. For the
wire frame algorithm, the concepts of closedness and orientability are embed-
ded in cycles that have insides and outsides. A face is defined in terms of ori-
ented cycles of edges (1-cycles) which, when nested in a tree hierarchy, express
the concept that a face has an exterior and may have interior holes. An object is
defined similarly in terms of oriented cycles of faces (2-cycles). From a compu-
tational point of view, there are local and global conditions to be satisfied. A lo-
cal condition may be the connectivity in the edge sequence at a vertex in a face,
or the face sequence in a solid at an edge. A global condition may be the closure
and orientability of a cycle. The condition of no internal self-intersections of the
boundary is expressed by tests for illegal (i.e., internal) intersections between
faces.

The quantities involved in the representation of geometric objects must be
mapped into the data representations of the computer being used. Some quanti-
ties may be represented directly and exactly as integers, for example, the rela-
tionship that edge-a is bounded by face-a and face-b. These quantities have
come to be known as the topological relationships of the object. Other, geomet-
ric, quantities that exist mathematically as real numbers cannot be expressed
exactly by any finite length numeric data type. Thus we are faced with a choice
between either inexact internal representation of the desired mathematical con-
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cept or exact (e.g., integer) internal representation of a mathematical approxi-
mation. The problem is well known among workers in the field, but has re-
ceived little attention so far in the literature [Sutherland et al. 1974]. The
following discussion assumes that floating point approximations to real num-
bers are being used.

Designers of boundary representation based algorithms for generating solid
objects have to deal with the need for global and local consistency and also with
the consistency between the topology and geometry of objects. The winged edge
representation [Baumgart 1974] has become widely used as a data structure for
both the geometric and topological components of the boundary representation
of solid objects.

Although both the CSG tree and boundary representation allow representa-
tion of any object that can be synthesized from the intersections of members of
an allowable set of half spaces, there are fundamental differences between the
approaches. An object described by a CSG tree is guaranteed to be a valid solid
object, independent of the number representation of the machine used. The tree
can be mapped into a character string and transmitted to another machine with-
out loss of validity. On a given machine, the object may not be the required ob-
ject, but at least it is guaranteed to be valid. Computation of the properties of a
parent object must ultimately be performed in terms of the terminal nodes and
is subject to numerical errors stemming from finite precision representation of
any real numbers. The boundary representation of a parent object must be de-
rived recursively from those of the subobjects. A boundary representation is a
composite of real numbers (geometry) and integers (topology). Its recursive
computation is subject to numerical errors. No system based on boundary rep-
resentations known to the authors is able to guarantee the validity of an arbi-
trary object, let alone whether it is the correct object. The basic difficulty arises
from the need, when computing the boundary of a composite object in terms of
its subcomponents, to make local numerical decisions (e.g., whether a vertex
lies above, in, or below a surface) without being able to check the global conse-
quences of the decision. Hence, although an object may satisfy local tests, it
may not satisfy a global test. Numerical tests are generally performed with re-
spect to a tolerance. Thus the validity of an object is also dependent on the tol-
erance used. These numerical issues play an important part in the practicability
of converting two-dimensional and three-dimensional information to solid
form.

CANDIDATE APPROACHES

Although there have been many partial solutions to the problem of automatic
generation of solid object representations from two-dimensional or three-
dimensional nonsolid inputs, there is no general and complete automatic con-
version process known to the authors. In this section we discuss the various at-

References pp. 46-48




30 MICHAEL A. WESLEY and GEORGE MARKOWSKY

tempted solutions in terms of the approaches used. These approaches taken
may be classified in terms of a number of parameters:

» Nature of the input data: single view, multiple views, or wire frame,
» Accuracy of solution: approximate or exact,
e Target volume object representation: CSG tree or boundary representation,

« Provision of clues to volume interpretation: use of labels or constraints on
the manner of sequence of input,

« Constraints on class of surfaces handled: planar only or smooth curved, and
» Ability to handle all geometric configurations.

Fortunately, most of the approaches taken by the various authors can be typi-
fied by a dominant parameter and will be discussed in the parameter sequence
given above. A sampling of the authors in the field and the parameter values
associated with their work is shown in Figure 2.

Single View—Early workers in machine vision developed algorithms for de-
riving the three-dimensional visible surface structure of scenes containing poly-
hedral objects from camera images. The most successful methods [Huffman
1971, Clowes 1971] involved labelling the edges in the view as convex or con-
cave. In the case of views of scenes with up to trihedral vertices and no cracks
or shadows, the number of distinct vertex labelling classes is quite small (e.g.,
eighteen) [Winston 1977]; relaxing constraints on the scene can expand the
number of classes to many thousands. Waltz derived an effective algorithm for
propagating local changes in an imperfectly labelled image to achieve global
consistency [Waltz 1975].

This work in scene analysis has been used as the basis for construction of sol-
ids from single images. The Origami World of Kanade interprets a view in
terms of folded paper objects, that is, objects constructed from planar material
of zero thickness [Kanade 1978]. Sugihara has used a labelling approach in the
formation of solid polyhedral objects from a hand-drawn sketch [Sugihara 1978,
1981]. The sketch is made up of straight lines, with hidden lines marked, and is
input during an interative sketching session with a tablet and display. A notable
feature of this system is the ability to detect whether a given sketch can repre-
sent a valid polyhedral object and, for a sketch that meets this criterion, the
ability to reposition vertices to make the sketch correct.

The Sugihara solid generation algorithm uses a linear programming technique
to satisfy constraints on components of the boundary representation of the ob-
ject (e.g., that the vertices for a face be coplanar). The complexity of the largest
sketch that can be handled is not stated, but application to highly complex
scenes does not appear to be practicable. The author proposes this system for
initial, rough input of the overall shape of a design.

Approximate Solutions—Many solid modeling systems have the basis for
generating an approximate solution for the two-dimensional projection to vol-
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Figure 2. Sample of approaches to volume reconstruction.

ume problem, by using functions for forming a constant thickness lamina or ex-
trusion from a planar shape. One of the earliest workers in solid modeling,
Baumgart, used the intersection of polyhedral extrusions of each of a number of
views to produce a volume object containing the true object [Baumgart 1974].
He showed a rearing horse figure reconstructed by this method from several
views. A three orthogonal view example is shown in Figure 3. This approach
has also been suggested by Boyse as a first step in an interactive two-dimen-
sional to volume conversion [Boyse 1983].

Generation of CSG from Two-Dimensional Projections—Aldefeld has de-
scribed ongoing work to construct a solid representation from two-dimensional
projections based on identification of members of a set of primitive volumes
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Figure 3. A volume object as the intersection of extrusions of its views.

whose combination (at present, only union is allowed) constitutes the object
[Aldefeld 1983]. The motivation for the work is that it be incorporated into an
existing two-dimensional draughting system.

In the description given, the system is limited to laminate primitive objects
that are generated by planar shapes (composed of circular arcs and straight
lines) that are parallel to one of the three orthogonal viewing planes. Thus, the
class of primitive objects includes cuboids, cylinders, and so on. Note that both
cylindrical and planar surfaces are handled but that the constraint on surface
orientation is very restrictive. The system proceeds by segmenting the three
views and then matches the segmented shapes to find instances of laminae. The
relationship between volume object and the laminae may be described as a CSG
tree.

The implementation is much simplified by the single class of oriented objects
and exploits explicitly the semantics of extrusion to guide heuristic search tech-
niques. Extension to cover negative objects (i.e., difference operations) appears
straightforward; extension to general object classes and orientations appears to
be difficult, if not impracticable.

Provisions of Clues to Volume Interpretation—A problem arising in recon-
structing a solid representation from two-dimensional and three-dimensional
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nonsolid data is the correlation of features between multiple views of the object.
This process can lead to numerical errors, ambiguity, and computational com-
plexity. Some workers have finessed the problem by requiring the user to give
clues to the three-dimensional structures arising from a set of views. Other
workers have addressed the full correlation problem and have not required the
provision of clues.

Labels—Labelling corresponding edges and vertices in different views avoids
multiview cross-correlation operations and leads directly to the construction of
the three-dimensional wire frame of an object [Wesley and Markowsky 1981].
Appel and Stein show an early system for labelled input of polyhedra [Appel
and Stein 1972]. The complete and automatic conversion of nondigital draw-
ings is seen by the authors to be an impossible task. However, Sutherland de-
scribed a multi-pen, large tablet based system for interactive digitization of
existing engineering drawings; this system could also handle perspective projec-
tions as seen in photographs [Sutherland 1974]. Using two or more (up to
seven') pens, the user could indicate corresponding features (points and edges)
in several views, both the basic orthogonal views and also auxiliary or detail
views. Holders for pens simplified entry of constant values for a view, for ex-
ample, all the features in a plane. Although not intended for generating solid
representations, a three-dimensional straight line wire frame produced by this
process could be converted to solid form by the wire frame algorithm
[Markowsky and Wesley 1980].

Constraints on sequence of input—Lafue freed the user from some of the rigid
and low-level data input requirements of having to identify corresponding
points and edges in different views by adopting a face-wise approach. The user
was required to input the nonnull area projection of each solid face in each
view by a complete but unordered sequence of projected edges defining the face;
a hole in a solid face was entered by defining a temporary bridging edge to link
the exterior to the interior boundary. Thus the low level, multiview edge and
vertex correlation problem has been constrained to the simpler, and less ambig-
uous, problem of cross correlation of faces, though the user now has the respon-
sibility of entering the temporary edges consistently in all views. The three-
dimensional wire frame generated in this manner was converted to solid form
using a set of axioms expressing the local and global boundary representation
rules and a theorem prover. Pathological cases were not covered [Lafue 1976].

Constraints on Classes of Surfaces Handled—In this section we describe the
area that has received the most attention and has seen the most detailed
implementations.

Planar surfaces—Idesawa elegantly described the general reconstruction prob-
lem in terms of projections and inverse projections, leading to an algorithm for
the construction of a wire frame and thence a solid [Idesawa 1973, Idesawa et
al. 1975]. He went on to present a polyhedron implementation with a partially
successful heuristic approach to ghosts, that is, vertex and edge elements gener-
ated by the inverse projection process that are not part of the boundary repre-
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sentation of the target object. A rather complex example is shown. Preiss
described a heuristic search approach based on satisfaction of geometric and
topological rules, but gave few details and only simple examples [Preiss 1980].

Markowsky and Wesley have designed, implemented, and used two polyhed-
ral algorithms. The first, the wire frame algorithm [Markowsky and Wesley
1980], finds all polyhedral solids with a given wire frame. The second, the
projections algorithm [Wesley and Markowsky 1981], finds all polyhedral solids
with a given set of orthogonal projections. The wire frame algorithm starts out
with a given wire frame, all the components of which must exist in the final ob-
Ject. The projections algorithm uses the given views to generate a superset
pseudo wire frame which contains ghost (that is, uncertain) components. An ex-
tended form of the basic wire frame algorithm must then handle both certain
and uncertain components. Since the projections algorithm is an extension of
the wire frame algorithm, the concepts of the wire frame algorithm and its ter-
minology are reviewed first.

In the basic wire frame algorithm, the input data (a wire frame, Figure 4(a))
are processed to find all planar graphs containing more than two noncolinear
edges. For each such graph, minimum enclosed areas (1-cycles of edges), using
each edge twice with opposite sense, are found; these areas are nested in a tree
hierarchy. From this hierarchy, candidate faces with an exterior boundary and
possibly interior boundaries (i.e., a face may have holes) are constructed; these
are called virtual faces (Figure 4(b)). For each edge, a list of virtual faces is
formed and ordered radially around the edge. Minimum enclosed volumes (2-
cycles of faces) are found using each virtual face twice with opposite sense.
These volumes are nested, again in a tree hierarchy. From this hierarchy, candi-
date volume regions called virtual blocks are found (Figure 4(c)). A final deci-
sion process assigns state solid or hole to each virtual block (Figure 4(d)), glues
the solid blocks together, and finds all possible solid objects with the input wire
frame. Note that there is always at least one virtual block that is an unbounded
envelope block (i.e., it is inside out) and that is always a hole.

The ability to handle all possible cases is embedded in the parts of the algo-
rithm for finding enclosed regions (e.g., bridges are ignored), for the handling of
illegal intersections between virtual faces and in the final decision process. The
correctness of objects is derived from the use of directed edges and faces, and
from the rules governing the number of times and directions with which edges
and faces are used.

The several stages of the projections algorithm are now described. Since
many of these stages are quite similar to the corresponding stages of the wire
frame algorithm, details are given only for those points which are different.

The early stages (1 through 3) of the projections algorithm are concerned with
converting, by means of a back projection process, a set of projections of an ob-
ject to a pseudoskeleton and thence to a pseudo wire frame for the object. This
pseudo wire frame contains supersets of the vertices of all objects with the given
projections. Furthermore, the edges of this pseudo wire frame partition the
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(a) Wire frame

L7
(b) Virtual faces U
A4
(c) Virtual blocks U
(d) Virtual block decision states Hole Solid Hole

Figure 4. The wire frame algorithm in action.

edges of all objects with the given projections. The existence of various edges
and vertices in objects may be known for certain or may be uncertain. All com-
ponents of the pseudo wire frame are consistent with ail the views.

The later stages (i.e., 4 through 7) apply an extended form of the wire frame
algorithm to a pseudo wire frame to find all polyhedral solid objects with the
given projections.

The stages are now described briefly. They are illustrated by the reconstruc-
tion of the two wedges object shown with its projections in Figure 5.

Stage 1: Check Input Data—The input data to the basic algorithm are as-
sumed to be a set of at least two distinct perpendicular projections of the wire
frame of a polyhedral object. Extensions to handle more general forms of input
data such as details, cross sections, and occultations are presented in the origi-
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Figure 5. The two wedges object and its projections.

nal paper [Wesley and Markowsky 1981]. The data are checked for validity and
reduced to canonical form with edges and vertices distinct and with edges inter-
secting only in vertices.

Stage 2: Construct Pseudo Vertex Skeleton—The vertices in each view are
back projected to find all Class I vertices (i.e., vertices formed by the intersec-
tion of noncoplanar edges) and some Class II vertices (i.e., vertices formed by
the intersection of only coplanar edges); at this point it is not possible to distin-
guish between vertex classes. While not all vertices may be recovered at this
stage, enough are recovered to enable the recovery of all vertices after passing
through the next stage. The Class I vertices of the two wedges problem are
shown in Figure 6(a).

Stage 3: Construct Pseudo Wire Frame—The vertices constructed in Stage 2
form a skeleton for the pseudo wire frame. Edges are introduced based on the
edges in the projections, as shown in Figure 6(b). These edges are checked for
mutual internal intersections. Intersections may introduce additional vertices
that are used to partition the edges. The remaining Class II vertices are con-
structed in this manner, as shown in Figure 6(c). The final set of vertices con-
structed here and in Stage 2 is the set of candidate vertices, and the final set of
edges constructed in this stage is the set of candidate edges. Together the candi-
date edges and vertices form the pseudo wire frame. Note that candidate ver-
tices (edges) might not be vertices (edges) or even points of the object. The
candidate vertices are a superset of V(0Obj), that is, the set of all vertices of the
object, and the candidate edges partition the elements of E(Obj), that is, the set
of all edges of the object. The edge connectivity of all vertices is examined and
the candidate edge and vertex lists edited. The editing process may remove im-
possible items, simplify colinear edges, and update the classification of vertices
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Figure 6. Stages of the two wedges reconstruction.
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as Class I or II. Candidate edges and vertices which are the only possible candi-
dates for some edges and vertices appearing in one of the projections are labeled
as certain and must appear in a solution object; all others are labeled uncertain
and may or may not appear in solution objects. In the two wedges problem, all
the vertices and edges of the pseudo wire frame are uncertain.

Stage 4: Construct Virtual Faces—Beginning with the pseudo wire frame gen-
erated in Stage 3, all virtual faces are found in a manner analogous to that used
in the wire frame algorithm. All uncertain edges are checked for containment in
at least two noncoplanar virtual faces. Any edges not meeting this criterion are
deleted and the virtual faces updated. Any impossible virtual faces (e.g., any
certain edges piercing the interior of a virtual face) are deleted. The conse-
quences of deletions are propagated until a stable condition is reached. Note
that coplanar loops such as BEIF and CDHG in Figure 6(c) will be found as vir-
tual faces. The fact that these particular virtual faces intersect illegally will be
recognized in the next stage.

Stage 5: Introduce Cutting Edges—Illegal intersections between two virtual
faces such that both faces cannot exist in an object are handled by the introduc-
tion of a temporary cutting edge and attendant vertices along their line of in-
tersection. The cutting edge partitions the virtual face into smaller independent
virtual faces and will be removed in the final stages. In order to reduce later
computational complexity, all the partitioning processes in the algorithm, be
they of edges or faces, generate lists of siblings with common parent edge or
face and also lists of correlations between edges or faces which cannot coexist in
an object; these data structures are used in the final stages of the algorithm.
Thus, cutting edges are introduced between the three Class II vertices in Figure
6(c).

Stage 6: Construct Virtual Blocks—Virtual faces are pieced together to form
virtual blocks in exactly the same manner as in the wire frame algorithm. In the
two wedges problem, six right-triangular prisms and an enveloping (i.e., inside-
out) cuboid are found.

Stage 7: Make Decisions—A depth-first decision process is used to assign the
state solid or hole to each virtual block and hence to find all objects with the
given projections. This process ensures that all cutting edges disappear in solu-
tion objects, that is, either they are totally surrounded by space or by material
or they separate coplanar surfaces. Efficiency in the search process is obtained
by careful pruning of the decision tree, for example, by recognizing that deci-
sions involving partitioned edges and virtual faces may be propagated to the
whole original edge or virtual face. The two possible polyhedral solutions found
for the two wedges problem are shown in Figure 6(d). For each of the solutions,
four prisms are assigned solid state and two are assigned hole state. The enve-
loping cuboid is always a hole.

A well known mechanical drawing problem is shown in Figure 7, and the
stages of its reconstruction are given in Figure 8. The projections and recon-
struction of an engineering object are shown in Figure 9.
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Top

Front

Figure 7. The two Y's problem.

Curved and oriented surfaces—Sakurai and Gossard have extended the gen-
eral polyhedron solution given above to handle certain cases of input data con-
sisting of three orthogonal views made up from straight lines and circular arcs
[Sakurai and Gossard 1983.] Thus, the solid may have certain planar, cylindri-
cal, conical, spheroidal, and toroidal surfaces. The data representation used al-
lows an object to have additional implicit nonvisible edges and vertices, such as
tangential edges (e.g., where a cylinder is tangent to a plane) and silhouette
edges (e.g., the projected outline of a sphere as seen in a view). The algorithm
proceeds by inverse projection of the views and uses edge and vertex type rules
to hypothesize the identity, in three-dimensions, of vertex and edge types. This
is followed by identification of faces and the assembly of faces into solids to
form all possible solids with the views. However, the requirement that the arcs
in all views be circular constrains the surface orientations; a further constraint
requires curved surfaces to intersect only with planar surfaces.

PROBLEMS

In the presence of so many partial solutions, the question of what remains to
be done to achieve a full solution may be addressed in terms of several areas of
unsolved problems.

Input Data Problems—When the input data are generated by humans, there
is the probability of error arising from several sources. When the data are gener-
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(a) The pseudoskeleton of the two (b) The pseudo wire frame with cutting
Y’s problem. edges added.

(b) (d)

(c) Sixteen virtual blocks found from the (d) Objects with the two views.
two views.

Figure 8. Stages of the two Y's reconstruction.

ated from manually produced engineering drawings, the caveats “do not mea-
sure” and “not to scale,” frequently found in such drawings, become a major
concern. It has been our experience in building solid models using dimensions
taken from such drawings, and then generating drawings from the models and
comparing with the originals, that positional errors are common. The drawings
have the general appearance of the object but rely on the dimensions for the lo-
cation of features. Further, the feature errors in several views may be inconsis-
tent, so that direct generation of a solid is impossible. A preprocessing phase,
using methods such as those of Fitzgerald, may be used to bring the given di-
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Front Side

Figure 9. Projections and reconstruction of an engineering object.

mensions into accordance with the line and vertex positions [Fitzgerald 1981],
at least in a single view. Human intervention will be needed to resolve topologi-
cal discrepancies.

Electronic drafting systems modify the concept of measurement errors; the
drawings are to scale to the resolution of the representation used. The human
still has to decide where to put lines and where to omit them. In a complex ob-
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ject the probability of the human’s being able to guarantee that the views are
correct, complete, and consistent is still very low.

Numerical Problems—Numerical errors cause severe problems in any bound-
ary representation modeling system when complex objects are involved. In the
reconstruction problem, algorithms try to establish global properties from a se-
quence of local properties. For example, in the case when no three-dimensional
clues are provided, the existence of a planar surface may be derived from the
close numerical agreement of cross products (i.e., normals) at adjacent nodes of
an edge connectivity graph. In the presence of numerical error, this could lead
to the entire upper surface of a finely divided geodesic dome being considered
planar. Modeling systems generally have considerable difficulty with the numer-
ical aspects of boundary representations even when there is higher level seman-
tic information available (i.e., parametric definition of a surface type with
parameters to the precision of the system number representation). Numerical
problems in reconstruction are not likely to be solved before the general numer-
ical representation problems are contained. One CSG approach [Aldefeld 1983]
may be more successful than the boundary representation approach for numeri-
cal reasons.

Computational Complexity—None of the published algorithms are accompa-
nied by treatment of the computational complexity involved. In order to give a
feel for some of the computational complexity issues, we give here a brief dis-
cussion of the stage-by-stage time complexity order of the projections algorithm
for polyhedral objects. These measures are summarized in Figure 10.

Stages of the algorithm Time complexity
1. Check input data
V— number of vertices maximum (VlogV, ElogE)

E — number of edges

2. Construct pseudo vertex skeleton
V — number of vertices less than V¥
N — number of views

3. Construct pseudo wire frame

2
E — number of edges less than E

4. Construct virtual faces
D — vertex edge degree maximum (D?, E)
E — number of edges

5. Introduce cutting edges
F — number of virtual faces

6. Construct virtual blocks

B — number of virtual blocks
7. Make decisions

B — number of virtual blocks

less than F2

B

less than 28

Figure 10. Complexity of stages of projections algorithm.



GENERATION OF SOLID MODELS 43

Stage 1: Check Input Data—The complexity of most of the tests in this stage
is fairly low. The overall complexity of the stage depends on which tests are
implemented. The following apply to input data with V' vertices and F edges.

= Checking for duplicate vertices and edges in each view can be done in
time V2 and E? if a straightforward comparison is used, in time V log V
and E log E if techniques based on sorting are used, or in time V and E if
a hashing technique is used.

+ Checking edges for nonvertex intersections requires time E? if done with
brute force by looking at every pair of edges. The time complexity can be
reduced significantly by partitioning space into zones and checking pairs
of edges that are both in the same zone.

Stage 2: Construct Pseudo Vertex Skeleton—The time required for back proj-
ecting all the vertices depends on the number of vertices in each view. If done
simply, this operation would involve taking all N-tuples of points, where N is
the number of views, and seeing whether a point exists in 3-space that projects
all the points in the N-tuple. A much better approach involves considering only
points from each view that have a chance of intersecting in 3-space. For exam-
ple, no point in 3-space could possibly project into (3,4,0) and (0,5,5) if projec-
tions are parallel to the Z and X axes. For projections parallel to the axes, it is
easy to partition the vertices in each view into groups that have a chance of in-
tersecting with vertices selected earlier in the N-tuple.

Stage 3: Construct Pseudo Wire Frame—It is hard to estimate the overall
complexity of this stage because it is hard to say anything about how the edges
in the different views will cooperate to create edges in the pseudo wire frame.
For most objects this stage proceeds rapidly, because there are few sets of lines
in the projections that are the images of the same line.

The intersection of pairs of edges can take EZ time if all pairs are checked for
intersection. If the pseudo wire frame is decomposed into geometrical zones
this will proceed much faster.

Stage 4: Construct Virtual Faces—This stage proceeds rapidly. At each vertex
of the pseudo wire frame, all pairs of edges are examined, and a face containing
them is sought. The complexity of this step at each node is of order D2 where D
is the degree of the vertex. This is quite a bit better than working with all possi-
ble pairs of edges.

Once a pair of edges, E, and E,, is selected, it is used to define a plane, P.
The algorithm searches the edges of the pseudo wire frame that are contained in
P for an oriented cycle beginning with E, and ending with E,. If there are sev-
eral edges in P at a vertex, the algorithm chooses the next left-most edge (rela-
tive to the orientation chosen at the starting vertex) and proceeds. Since the
choices are forced, no trees are found and the algorithm quickly completes its
search.

References pp. 46-48




44 MICHAEL A. WESLEY and GEORGE MARKOWSKY

Stage 5: Introduce Cutting Edges—The simplest way to introduce cutting
edges is to check all pairs of virtual faces for intersection. This approach is time
consuming because of the large number of faces involved. Once the edges are
found, all the points of intersection among the cutting edges in each virtual face
must be found. Clearly, the amount of time required depends on the number of
edges and faces involved. Some refinements based on geometrical zones can be
made to reduce the computation required. Cutting edges are a problem primar-
ily with highly symmetrical objects, such as the ones that arise from posed
problems. They occur less frequently in realistic objects.

Stage 6: Construct Virtual Blocks—The complexity of finding virtual blocks
is linear in the number of virtual faces. If there are no contradictions in the ob-
jects, every virtual face will be in two virtual blocks. The algorithm finds the
blocks by starting with a face and adding to it neighboring faces, trying to con-
struct a two-dimensional polygonal surface such that crossing an edge always
leads to another surface. Every virtual face belongs to at most two virtual
blocks, and thus there is little searching to do since, at each edge, the choice of
virtual face is forced. Virtual faces that belong to only one virtual block can be
dropped, since they cannot be real faces of the object.

Stage 7: Make Decisions—Finding all solutions to the original problem is an
exponential problem, since there can be exponentially many solutions even with
three views of the object. With most real objects, the search proceeds very rap-
idly, especially in the cases where there is only one solution.

Our experience with the execution of this algorithm has been that the intro-
duction of cutting edges in Stage 5 is itself computationally expensive and can
also lead to a large number of artificially small potential edges and virtual faces.
These in turn lead to a large number of virtual blocks. An exhaustive, depth-
first search to assign the state solid or hole to virtual blocks is exponential in the
number of blocks; the implementation relies on heavy pruning (e.g., propaga-
tion of the decision properties of a partitioned edge to the whole parent edge) to
reduce the computational complexity to manageable level. Observation of the
block state assignment process in action has shown that once a state assignment
decision is reached for a single block, the consequences generally propagate ex-
tremely rapidly. The provision of volume clues by the user (e.g., the assertion
that a spatial point is within material) should speed up the initial block decision
process considerably.

Although the multipliers have not been discussed, the time (and, in fact,
space) complexity of these algorithms is not a serious limitation on practicality.
Even the exponential complexity of the final decision process has yielded to the
pruning operation, and highly symmetric views generating about one hundred
virtual blocks have been solved quickly.

Auxiliary and Symbelic Data—Apart from the Sutherland digitization proce-
dure {Sutherland 1974] and the projection algorithm, none of the workers ad-
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dresses the inclusion of data from auxiliary and detail views on two-
dimensional projection inputs. This is not intrinsically difficult, but it is re-
quired for a full solution.

Treatment of symbolic data, such as description of a tapped hole or radius of
a circle, is a much more difficult problem. It requires a knowledge-based ap-
proach with domains that include geometric relationships such as tangency
[Light 1982], machining processes such as tapping, and mechanical drawing
techniques and standards.

APPROACHES TO A USABLE SOLUTION

In view of all these problems, together with the need to resolve ambiguities, a
near-term usable solution will have to be interactive. In this section we discuss
a possible overall approach based on integration of the individual candidate
approaches presented earlier in this paper.

Rather than risk absorbing all the data and either dying under the computa-
tional load or, after extensive computation, reporting that no solution is possi-
ble, a successive refinement approach is favoured with the system doing the
detail work and expecting high-level guidance from the user. The first step will
be to obtain an approximate volume shape into which details may be intro-
duced later. The approximate solution approach of intersecting extrusions of
the projections will bound the object space and give the user a feel for the over-
all shape. Alternatively, Sugihara’s sketch input approach [Sugihara 1978]
would also provide a volume starting point.

In order to reduce the computational load, the user will be able to guide the
detail process. Onto the initial volume, the system will overlay additional three-
dimensionally derived edge and vertex data. These data will already have been
pruned to satisfy consistency tests (e.g., a valid edge must separate an even,
nonzero number of faces). Any further interactive pruning by the user can be
expected to propagate and reduce the uncertain vertex, edge, and face sets. As-
sertion that points are in material will have a similar effect. Numerical errors
can be reduced by user assertion of surface membership and even high level
properties.

In principle, input data errors may be observed by the user and corrected.
The localization of errors is a hard problem. An error may cause a global con-
sistency test to fail at a point far from the originating error. In this case, the
whole global net will have to be shown to the user for study and data error
diagnosis.

The interactive approach also allows progressive handling of symbolic data.
Initially, the conversion system will require the user to interpret the symbolic
data; later, if the system acquires expert capabilities, the symbolic data can be
processed more automatically. Invention is needed to handle a wider and less
constrained class of surfaces. As a first step the work of Sakurai and Gossard
References pp. 46-48
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must be extended to remove orientation and intersection constraints on curved
surfaces [Sakurai and Gossard 1983].

SUMMARY AND CONCLUSIONS

In this paper we have examined the many partial solutions to the problem of
constructing volume models from two-dimensional and three-dimensional non-
solid data. Although none of these are in themselves complete, an evolutionary
and interactive approach to a useable solution is proposed.
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DISCUSSION

Wesley

I must say I feel nervous speaking to an audience that has so many people in
it whose work I'm talking about. I see Chuck Eastman there and I see David
Gossard is about to put up his hand, so I know I’ve got trouble coming,.

Robert Johnson (R.H. Johnson & Associates)

As far as user iteraction is concerned, do any of the systems have the ability
to make use of the coherence of the object as developed? In other words, if in-
formation is input in a number of steps, a different model would result at every
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step. It might be possible to use different algorithms at each subsequent stage
rather than make a total appraisal of all of the environment. It could be a way
of constructing a solid object.

Wesley

Forcing the user to work in a step-by-step consistent mode is a big constraint
on how the user works and he may not want to do that. I think you are thinking
very much of building a CSG representation. But to answer your question, no, I
do not think that any of these systems do that.

M. A. Wesley

John Hinds (General Electric)

In one of the examples, you successfully reconstructed the objects from 1250
edges. Was that from three projections or four projections?

Wesley
No, that was just a wire frame. So the input data contained the three-dimen-
sional vertices and the linking edges.

Hinds

Does that take a long time?

Wesley

Well, the code was written very much in the mode of “let’s get it written,”
and so it’s mostly n? code with occasional ventures into something a little more
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efficient if it seems necessary. That particular algorithm was run in a System
IBM 370/168 and I think took rather less than a minute of CPU time. But that
was a nonoptimized implementation. The potential customers who looked at
the algorithm to convert a wire frame of that complexity to a solid model felt
that it was a very acceptable price to pay.

David Gossard (Massachusetts Institute of Technology)

I was raising my hand to cheer you on. Your statement that most approaches
are unable to handle wrong or incomplete data is absolutely right. I was curious
to know of any work which has dealt with problems of either inconsistencies or
incompleteness in various views of a geometric entity.

Wesley

I don’t know of any such work. One can think of a lot of things one could do,
but I haven’t seen any explicit work to address that.

Michel Melkanoff (University of California~Los Angeles)

We are working on that area. We are trying to develop an algorithm for a
simple, smart CAD system which can discover certain problems; in particular,
one of the hardest problems is the inconsistency of multiple views.

Kalman Brauner (Boeing Commercial Airplane Company)

It is my understanding that you have done some work on being able to char-
acterize conditions under which solutions are unique, i.e., exactly one object is
reconstructed given certain projections. Could you comment on that?

Wesley

One would very much like to be able to look at the input data and come up
with a statement about the number of solutions. The only way we have of doing
it is to find them all and count them. We haven’t found any cheaper way of
doing that. Every time you try to think about measures for what might be clues
towards ambiguities, it really seems that you might as well do the whole job and
see what comes out.

Brauner

So, for example convexity or a lack of holes is not adequate?
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Wesley
Right.

Fumihiko Kimura (University of Tokyo)

I feel that your comment on a graphic approach to the user interface is very
interesting. Have you done any work in this area?

Wesley

I think that you, Professor Kimura, are well qualified to make that comment
because you in fact have worked extensively on the interactive design of ob-
jects. I didn’t mention your work because I felt it came outside this little classi-
fication I was using, but I think your design with tablet input describing
geometric components of an object is very interesting. We have not done any
work on that.






