SPY) e - \/ @A‘\’laj Z ,ec'fuy{_ ffes

ANALYSIS OF A UNIVERSAL CLASS OF HASH FUNCTIONS

George Markowsky
J. Lawrence Carter
Mark N. Wegman

Computer Sciences Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10566

Abstract: In this paper we use linear algebraic methods to analyze the performance of several
classes of hash functions, including the class H, presented by Carter and Wegman [2].
Suppose H is a suitable class, the hash functions in H map A to B, S is any subset of A whose
size is equal to that of B, and x is any element of A. We show that the probability of choosing
a function from H which maps x to the same value as more than t other elements of S is no
greater than min(!/t2, 11/¢4).

Consider a database storage and retrieval system implemented using hashing and a linked
list collision resolution strategy. A corollary of the main result is that the probability that the
system would perform more than t times more slowly than expected is no greater than
min('/12, '1/t4). The "performance” being considered can be either the number of memory
references required to process any individual request or the number required to process an
arbitrary sequence of requests.

Notice that these results do not assume that the requests to the database are random or
uniformly distributed. Instead, the averaging is done over the possible choices of the actual
hash function from H. Since the system designer can be sure that this choice is made random-
ly. the probabilities given hold for any input.

It is also shown that the bound on poor performance when balanced trees are used in
place of linked lists is approximately min('/ 4, '1/(¢ty). The formulas are generalized to
any size S.

Y | Introduction

Hashing provides a fast method of storing information in and retrieving it from a large
database. Only a constant number of memory references are required to process a request, on
the average, no matter how large the database is. On the other hand, if the database were
structured as a balanced tree, then on the order of log(n) references would be required when

there are n items in the database.

A disadvantage of hashing, which has perhaps prevented its more widespread use, is that

the good performance cannot be guaranteed - if the data is distributed poorly with respect to

W CS
ey
(179

346

the hash function, a request may require on the order of n memory references. Often, analyses
of algorithms which use hashing make the assumption that the data is randomly distributed.
But data that arise in real applications are not often truly random, and sometimes a systematic

bias in the data makes the algorithm perform more poorly than predicted.

In (2], Carter and Wegman show that the average performance of a storage and retrieval
system which uses hashing can be analyzed without considering the distribution of the input.
This is done by finding a universal class of hash functions - a class with the property that given
any input, the average performance of all the functions when used to hash that input is
"good". It follows that for any input, "most” functions perform well on that input. Since one
can make sure that the choice of function is random, "most’ of the time the function chosen
will perform well. Carter and Wegman [2] show that the average time required to process any
sequence of requests with their approach is a linear function of the number of requests
processed. In addition, they present several classes of hash functions which are universal and

can be evaluated fairly easily.

In order to be mathematically certain that the predicted average performance will be
achieved, it is necessary to change hash functions periodically. For some applications, such as
a compiler, this is feasible. However in a large database system it may not be practical to
change the hash function, since this would require moving all the data to new locations. Thus,
we want some bound on the probability that a randomly chosen function will perform poorly.

This paper gives an improved bound on this probability for the class H, over that given in [2].

For some applications of hashing, it is not enough to know that the average performance
will be good. There may be some level of performance such that any worse performance
would not be tolerated. For instance in an online application, we may want an assurance that
no individual transaction will require more than, say, t times the expected time. This paper

also gives a bound on the probability that such an undesirable transaction will occur.

Section 2 presents some background and defines the class H,. Section 3 presents the
mathematical analysis of the set of all linear operators between twWo vector spaces and in

section 4 we use these results to derive our results about the classes of hash functions.

§ 2 Background

By an associative memory we mean a system which can perform the operation of STORE,
RETRIEVE, and DELETE. STORE(KEY, DATA) stores DATA under the identifier KEY
and overwrites any data previously associated with KEY. RETRIEVE(KEY) returns the data

347

associated with KEY, or returns NIL if there is no such data. DELETE(KEY) removes KEY

and the associated data from the memory.

One method of implementing an associative memory is to use hashing with a linked list
collision resolution strategy. In this implementation, there is a collection of b linked lists.
There is also a function f, called a hash function, which maps the set of possible keys into the
set {0,1,...,b-1}. Given a STORE, RETRIEVE or DELETE request, the hash function is
applied to the given key. The resulting index is used to designate a linked list where the key
and its associated data are to be stored. See [1], pages 111-113 for more details. Another
implementation would to be to use balanced trees ([1], pages 145-157) in place of the linked

lists.

Suppose S is the set of keys which have been inserted into the associative memory
system. As we will justify in section 4, the time required to perform an operation involving the
key x is determined by the number of elements of S which are mapped by f to f(x). Thus,
we define A, (f) = }{yeSty#x, f(x)=f(y)}|. (Note: In [2], the notation 8;(x,S) is used for
this quantity.) Notice that A, s(f) makes sense whenever f is a function, x is a point in the

domain of f and S is a subset of the domain of f.

We now define some classes of hash functions. Let A = (Z,)™ (that is, the vector space
of dimension m over the field of two elements) and B = (Z,)". One class of hash functions
is L, the set of all linear transformation from A to B. (Although L is not explicitly mentioned
in {2]. it follows directly from that paper that L is a universal class of hash functions.) For
some choice of j and k, let A" be the set { (a,,az,..‘,aj) | a;e{0,1,...k-1} }. [2] gives a
definition of the class H, of function from A' to B. We give here an equivalent definition of
that class. There is a fixed map g from A'to A = (Zz)kj. Specifically, gl(ayay,...,a))) is
the vector which has 1's in positions a|+1,a,+a2+2,....j-§;§‘ai. The only property of g we
need to use in this paper is that it is one-to-one. Letting L again be the set of linear transfor-

mations from A to B, H, = {Tog|TelL}.

Since g is onc-to-one, for all x'eA’ and S'cA', if f = Teg € Hy, then 8, g'(f) = A, ¢(T)
where x = g(x') and S = g(S"). Thus the performance of H, is the same as the performance

of 1. We look at some of the structure of L in the next section.

§ 3 Linear Transformations Between Vector Spaces

Throughout this section A is an m-dimensional vector space over Z,, S is a subset of A
and x ¢ A-S. We will think of Ax.5 as a random variable over the sample space
L=4T:A-B|Tis linear} with the uniform distribution. We use E, Var and ¢ to denote the
expectation, variance and standard deviation of g random variable. A reader unfamiliar with
these terms should consult Feller [3]. Whenever a summation is over several elements of a set,
such asx‘y}les, each subset of distinct elements is used only once. Thus, if S = fa,b,c},

z Ax.y = Aa.h + Aa‘c + Ah.c .
X.YES
IS 1
and Var(Ax §) = — - — < E(Ax s)-
e 2" 2" i

S
Theoreml E(4,) = ! nl
Proof: Fory ¢ A and T € L we let Ax‘y(T) =1lif X # yand Tx = Ty

= 0 otherwise.
Clearly Ax.S = y‘eZSA"-Y and E(Ax.s) = ygs E(Ax‘y). Since T is linear and we are working
over Z,, Tx = Ty iff T(x+y) = 0. Since X£S, X#£Y 50 x+y#0 and we may find a basis
X+y. ay ..., a,; of A. Since T is uniquely determined by choosing any of the 2" points of

B as a value for each basis vector, IL| = (2™ The number of linear transformation with

T(x+y) = 0 is (2M)™-1 since we are free to choose any point in B as a value for each of the

a;.
nym-1 is|
Thus E@4,)=Q2) " _ 1 and E(a,) =
N emnm 2" ' 2"

Now Var(a,) = E(a2) - E2(A,9) = 3 E(A2,) + 2 S E(a, y Bx2) - EX(4, §)
' y€eS ! Y.ZES ’ ' ’
= ,Es E(a,) + 2”2ES B4y 8,2) - E24,) since Oy =47,

Thus we have Var(Ax_S) = E(Ax‘s) - EZ(AX s)+2 I s E(a, y 8¢ 2
. yae . .
Is|2
and EZ(Ax,s) ==

where E(Ax.s) =
2 n

For all y,z ¢ S with Y#2, x+y and x+z are linearly independent. Thug we can choose a basis

x+y, x+2, a',,..‘,a;n_z of A. Now Ax_y Ay, =1iff Tx = Ty = Tz iff T(x+y) = T(x+2z) = 0.

Aroui (zn)m-Z 1
guing as before we see that E(a, 4,)=

(Zn)m = 2?1

ISl sy2 ISICsT-1 S
Thus Var(a, o) = 2° 1217 + '\= L(]-L).
N 2n 22n 22“ 2n 2n

349

Var(Ay §)
Theorem 2 Prob(A, 5- E(A, o) > 1) < —_—s a

t

We will derive more information about this distribution by using the fourth central
moment (sec [3]). The following theorem is proved in a manner identical to the way

Chebyshev's inequality is derived.

4
Theorem 3 Let X be a random variable with mean #. Then Prob(| X-u|>t) < E((x;)) .
t
O

Theorem 4 Let 8 denote E(Ax.s)- Then

8,0 +(36-248) T E(A,, A,,4,,)

E((A,s-HH=24 = E@, A A
y.Z,w, €8

X, x.z Px.w
v.Z, Wil €S y

+ (14-240+1202) = E(a, y) + (0-402+603-364)
y.Z€S ’

where as before, the sums are over sets of indices no two of which are equal. (Bounds for the

sums are derived in the lemmas which follow the proof.)

Proof: Using just the properties of the expectation, we can derive
(Equation *) E((A, s - 0% = E(A‘;.S) - 401;2(A,3(s) + 6()2E(A2 s) - 364,
I'he argument in Theorem 1 shows that E(a? s) =0+2 % E(A x.2)-

y.z€S
Next., we obtain

l-"(_\: S) = ¥ E(Ai_y)+3 £ = E(A% v X D +6 = E(A z Ax_w)
- yeS y€S z€8S y,Z,WE€S
1#y
=0+6 3 E(A x) +6 I E(Ax'y Ax‘z Ax‘w),
y.z€S y.Z.W€S
siee Ag_),AK_I = Ax.y Ax‘z = Ax,y A)z(_Z and Ai,y= Ax.y'

Vinaily, we can derive

Pt = TE@AY) + 43 T EM},4,,) +6 3 E(A2 Az)
N veS

y€e€S z€8S y,z€
y#2z
t12 5 2 CEMIA, A0 +24 3 E(A, A, 4,4
yeS z,weSs y.z,w,t ’ '
y¥#z
Y#EW
=0+ 14 3 E(A,A,,) +36 T B4, 4,,4,,)

y.z€ ¥.Z,W

+24 3 OE(A,, A, B, A,

Y.Z,w,t

The theorem follows upon substituting the above values into (Equation *) and simplifying. O

350

The next lemma follows from the proof of Theorem 1. We retain the convention that
whenever k indices appear under a single summation sign without any other indications, we are
to sum over all subsets of S consisting of k distinct elements.

|S|)
Lemma 5 ¥ E(AxyA”)=££_. a
= y.z€S : : 22n

IS') S S|-1 S SI-1(IS|-3
Lemma 6 (3 < p> E(AxyszAxw)Sl (IS)+ ISI(SI-1)(IS]-3)
- 23n y.ZweS : ’ ' 6e220 64230

Proof: Note that Ax‘y a,, 4, o # 0iff Ax'y = A,('Z = A, = 1 iff the span of T
(= {y-x, z-x, w-x}) is in the kernel of T. Any two elements of T are linearly independent

(e.g., y-x = z-x would contradict Yy # Z).

If the span of T has dimension 2, E(4, y 4, ,48,.) = % while if the span of T has
. . , 2
dimension 3, E(4, vy Az 80 = % Now the lower bound follows since we have
. . . 23
(l?l) triples to consider and E(AX_YAX'ZAX'W) > ?;—n-

To derive the upper bound, it suffices to determine the largest possible number of triples

y.z,w such that T spans a two dimension space. Equivalently, we can determine the smallest

possible number of triples for which I' will span a three dimensional space. This last number is

ISTCIST-D(1S]-3)
3!

order) of choosing the first two terms the triple. For the third term there are at least 1S|-3

To see this, observe that there are ISECISI-1) ways (counting

choices: omit the first two y,z and at most one more element y+z+x. Since we want unord-
ered triples we divide by 3!. Thus the largest possible number of triples which span a two

dimension space

ISl SI(IS]-1 - -
is ()- ISIASI-DAIS]-3) = IS1asi-n and the upper bound follows. 0

3 31 3!

(ISI)
Lemma 7 23" Sy.z,ites E(Ax.y Ay, Byw A0

ISIAUSE-DST-3)(1S1-7) + SISICISI-1(IS]-3)
41 240 41 230 '

<

Proof: The proof is similar to the proof of Lemma 6 so that we shall briefly sketch the
differences. For distinct Y, z, w and t, {y-x, z-x, w-x, t-x} spans either a 3 or 4 dimensional
subspace (it cannot be 2-dimensional since there are only 3 distinct nonzero vectors in a 2
dimensional subspace). If it is 3 dimensional, the corresponding expectation is %}, etc.

ISIASI-DAUSI-3)([S|-7)
4!

Arguing as in Lemma 6, we see that there are at least

351
unordered 4-tuples which span a 4-dimensional subspace of A. [

Theorem 8 Let 8 = E(A, g) as in Theorem 4. Then
E((8,5-0% <63+ 90240 if§ < 3/2

503436248 if 0 > 3/2.

IA

Proof: For 8 < 3/2, the coefficients of the first two sums appearing on the right-hand side of
the equation of Theorem 4 are all nonnegative. Thus we can bound E((Ax,s - 09 by
substituting the value derived in Lemma 5 and the upper bounds of Lemmas 6 and 7 into the
right hand side of the equation of Theorem 4. Note also that quantities of the form

(1S1-k)/2" are < |S| /2" = 6. Simplification yields 83+962+0.

For 8 > 3/2, the procedure is almost identical except that the coefficient 36-248 is < 0.
We substitute as before, except that we must now use the lower bound derived in Lemma 6.

Simplification yields 563+362+0. [

Exampie 9 We now indicate how the preceding results are to be used. Suppose |S}| = 2n.
Then 6 = E(A, g) = 1. Theorems 1 and 2 imply that Prob(| Ax_,S - 1] > t) is bounded above
by 1/t%, while Theorems 3 and 8 imply that it is bounded above by 11/t4. Thus it is bounded
by min (1/12, 11/1%). O

The following lemma will be of use in analyzing sequences of requests to an associative
memory. It allows us to bound the variance and fourth central moment of a sum of random

variables in terms of the values of these operators on the summands.

Lemma 10 Let tX;}i—1. o be a set of random variables defined on the discrete sample space

U= IXpxpt. Let X =i§1xi' Then E((X-E(X))™) < n™ max{E((X; - E(X;))™)| i=1,...,n}

for m=2 or 4,

Proof: Let RP denote the usual Euclidean space. Form = 2 or 4 and A = (a,,....a) in RP,

. P m\1/m
we define A, = (iz:lai) - The Minkowski inequality (see Naylor and Sell [4]) implies

n n
that for all A,.... A, ¢ RP, h2Ai hm € Z 0 Ay < nmaxi Al | i=1,..0}

Let V = (v,,...,vp), _/i = (v”,...,vip), E = (e,,...,ep) and Ei = (e“,...,eip) be elements of
RE where i= Lo, vj = X06) (Brog) /™ v = Xi0x) Br(xp)V/m |) = E(X) (Prixp)1/m

and ¢;; = E(X;) (Pr(x;))!/™ for i=1,...,n and j=1,...p (recall x; € U).

352
The following facts should now be clear:
() V-E =i=§l(\7i -E);
(i) IV - Elly = (B(X-E(X))™)!/m ;

(i) IV - Eill m = (E(X; - E(X;))m))!/m

It follows that E((X-E(X)™!/™ < n max{E((X; - E(X;)™/™[i=1,..n}"/™ from

which the theorem follows immediately. [J

§ 4 Analysis of the Class H,

We now relate the results of the previous section to the classes H; and L of hash
functions defined in section 2. "Suppose one implements an associative memory using the
linked list collision resolution strategy with hash function f. If S is the set of keys which
have been inserted into the associative memory and r is a request involving the key x, then a
reasonable definition of the cost (performance) of r is CL(fr,S) =1 + A, s(f). If keys are
stored on some secondary storage device such as a disk, this cost function gives the maximum
number of secondary storage references required to process r. This maximum is required if
either x is the last element of the list being searched, or r is an "insert" request and x ¢ S.

The subscript "L" in Cy (f,r,S) reminds us that we are considering the linked list strategy.

If R is a sequence of requests and S is the set of keys which are inserted by requests in

R, then we can define the cost of processing R to be CL(,R) = X C(f,r,S). Again, this
reR

cost is an upper bound for the number of secondary storage references necessary to process R,

assuming the associative memory had nothing stored in it at the beginning.

If the associative memory is implemented using balanced trees in place of the linked lists,
then appropriate cost functions would be Cr(frS) =2 + log, (1 + A, s(f)) and
Cr(f.R) = = Cy(f,1,S)
reR

The remaining theorems are direct applications of the work of the previous section. They
are stated in terms of the class H,, but also apply to the class L.

Theorem 11 Suppose S is any set of keys and r is any request. Let & be the load factor

S|
2—n. If f is chosen at random from H,, then

Pr|C(fr,8)-(146)| > t] < min (i'm_(oz
2 ¢

353

where m(0) = 83+962+6 if @

[7a}

ofw Njw

=503+30240 if 0

v

Proof Suppose r is a request involving the key x. Since Ci (f,r.8) = 1 + A, «(f),

theorem 1 tells us that the expectation of C (f,r,s) is 148 and the variance is 8. Chebyshev’s
inequality (Theorem 2) then tellsus Pr [|C (f,r,S) - (1+8) | >t] < —0{ .
t

Since C (f,r.S) - (14+8) = A, (f) - 8, Theorem 8 tells us that E((C (f,1,§) - (146))%) < m(8).

Theorem 3 then implies that Pr [|C (f.r.8) - (1+0)] > 1] < 8L o
{

S
Theorem 12 Let R = < ry, rp,....,r,> be any sequence of requests, and let 8§ = —nl where
- = 2
S is the set of keys inserted by requests in R. If f is chosen at random from H,, then
9 m(8)
T T

Pr [[CL(FR) - k(1+8)] > kt] < min() where m is defined as in

t
Theorem 11.

k
Proof E(C((f,R)) =,21E(CL(f, 1, S)) = k(1+8). Lemma 10 tells us the variance and 4th
rrooi) i=

moment of C, (f,R) are bounded by, respectively, k26 and k*m(8). Thus, as in theorem 11,

2 4
Pr| | CL(FR) - k(1+8) | > ki} < min(LS -“-M—) - min(L .mw)).
(kt)? (k0)* G

Note: The bound on the probability given in Theorem 12 cannot be improved without an

improvement in Theorem 11. To see this, pick k >> |S| and let R consist of insertions of

the elements of S, followed by k - | S| identical request r. Then CL({.R) = k C|(fr,S) so
Pr[|CL(f.R) -k(1468) | >kt] = Pr{|C (f,r,S) - (1+8)|>1] .

Theorem 13 Suppose S is any set of keys and r is any request. Let & and m(8) be as in

Theorem 11. If f is chosen at random from H,, then

(i} m(8)
(e()? (e(t))?

Pr{Cy(fr,S) >t < min() where e(t) = 2v2 - (8+1).

Proof: Recall that C(f,r,§) = 2 + log, (1 + A, s(f)) =2 + logy (Cp(f.x.9)).
If C4(f.rS) > t, then log; (C(f.x,8)) > t-2, so C (fx,S) - (1+8) > 202 - (8+1) = e(t).
Thus Pr [Cp(fr,S)>1] < Pr{|C (f.x,S) - (1+8)|>e(t)]. Applying Theorem 11 to the right

side completes the proof. []

354

The following lemma will be used in the proof of Theorem 15. The proof is omitted, but
the lemma follows directly from the fact that the logarithm function has a nonpositive second

derivative over the interval from ajtoa,.

Lemma 14 leta; < a, € .. a, be positive numbers and Ay....,A, nonnegative numbers

n n n
which sum to 1. Tht:ni___zl Aia; € [ag,a,] and i=21)‘i log; a; < log, (iill)\iai).

S
Theorem 15 Let R = < T|5f2,...,f > be any sequence of requests, and let § = -u— where S
—_—— 2n
is the set of keys inserted by requests in R. Let m(8) and e(t) be as in Theorem 13. Then if

I is chosen at random from H,,

Pr [C(f,R) > kt} € min (o m(8))

eW? " (e())?
k
Proof Suppose Ct(f,R) > kt. Then i_21(2 + log (CL(f,xi,S))) > kt

k1 k 1
so i—zl-k— Iog(CL(f,xi.S)) > t-2. By Lemma 14 this implies log(i 2] T CL(f.xi,S)) > t-2

k 1 k
0.2+ CL(fx,$) >22 or (iz:1 CL(f,xi,S)) - K(0+1) > k(212 - (8+1)) = k e(1).

Thus, Pr [C(f,R) > t] < Pr{ [CLU,R) - k(B+1)| > k e(t) |
Applying Theorem 12 completes the proof. [}

References

[1} Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading Mass. (1974).

[2] Carter, J. L. and Wegman M. N., "Universal Classes of Hash Functions," Proceedings
of Ninth Annual SIGACT Conference May, 1977.

(3] Feller, W_, An Introduction to Probability Theory and Its Applications, John Wiley,
New York (1957).

[4] Naylor, A. W. and G. R. Sell, Linear Operator Theory, Holt, Rinehart & Winston, New
York (1971).

