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1. Introduction

In this paper we show (Corollary 2.6) that the num-
ber of idempotents in DA’ where A is an element of an ar-
bitrary semigroup , is equal to the number of ways A can
be written as a product XY with XeRA and YeLA, divided
by IHAI . (See [5] for general reference.) We use this to
prove that if A is a regular element of rank r of the
semigroup of binary relations on a finite set of cardi-
is

nal n, then the number of idempotents in D,

r X
1/|HA|E (-1)1(?)(M -i)n » where M, is an integer(Theorem
i=0 17VA A

5.3). Special cases of this result have been found by
K.K.-H. Butler [4a]. Formulas for the number of idempo-
tents in LA and RA are also derived. A method for calcu-
lating MA directly from the Zaretsky lattice of A [8] is
also given (Theorem 5.8).

2. General Results

We begin with a few lemmas whose proofs are obvious.
LEMMA 2.1 Let S be a semigroup , A,BeS.

(i) AL B«>there exist X,YeS' such that XA = B and YB= A.
(ii) AR B ++ there exist X,Y e€S' such that AX = B and
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BY = A,

LEMMA 2.2 Let S be a semigroup, A,B ¢ S. The follo-
wing are equivalent.

(i) There exist a,b,c,d € S' such that caA = Abd =
= A and aAb = B,

(ii) There exist a,b,c,d € S' such that acB = Bdb=
B and cBd = A,

(iii) ADB.

We will use the following theorem of Miller and
Clifford [5;p.59] in the derivation of some of the
following results.

THEOREM 2.3 Let S be a semigroup , a,b € S, Then
abeR f\L if and o nly if R f)L contains an idempotent.
In th1s case = =
_____a al:lb Hab Hab Ran[‘b aHb'

REMARK:It is important to note that in the case

considered in Theorem 2.3 above, multiplication by a on
the left induces a bijection between Hb and H b Simi-
larly, multiplication on the right by b induces a bi-
jection between Ha and H
DEFINITION 2.4
(i) Let X be a set. By |X| we shall mean the cardi-

nality of X.
(ii) Let s be a semigroug and X be a subset of s,

ab*®

set of all idempotents contained

———— ————  ————
—— — — ———

in X,

(iii) Let S be a sem1grou2 and let A e s, By P we
mean {(X, Y)l XeRy, YelL, and XY = A} .,

REMARK: We note that PA # 0 if and only if A is re-
gular, since if Py # ¢ by Theorem 2.3 it follows that
E(D,) # ¢ and hence A is regular. Similarly, if A is
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regular then there exists an idempotent MeLA [5], but M
is a right identity for LA and hence (A,M)ePA. Thus in
the proofs of the following theorems we are only con-
cerned with the cases PA # b (i.e. A is regular) since
in the other cases the theorems are trivial.
THEOREM 2.5 Let S be a semigroup , AeS . Let
0: PA > E(DA) be given by:6(X,Y) is the unique idempo-
tent in LX"RY ( an H-class can have at most one idem-
potent). Then 8 is a surjection and if BeE(DA), then
lo"l(&)| = [u,|

PROOF: As was noted in the remark above we need only

consider the case where A is regular. By Theorem 2.3 6
is well-defined. 6 is surjective since if BeE(DA), then
by Lemma 2.2 there exist a,b,c,deS such that aBb = A,
caB = Bbd = B. Let X = aB, Y = Bb. It is easy to verify
that ()(,Y)el’A and 8(X,Y) =
Now we proceed to the second part of the theorem.
"1y = {(x,1)] XeR, MLy, YeL, MR and XY = A} . Pick

X.,Y )eﬂ‘l(B) , and let w:e'l(B)—-o be the projection
0’0 0

map on the first factor. m is surjective since if XeHx ,

0
XYoeH by Theorem 2.3 and hence by Theorem 2.3 again we

see that XHY = HA . = is injective because if
0

(X,Y)se'l(B) then multiplication by X on the left gives

a bijection between H, and H,. Hence [0~ (B)I = |H,| .

REMARK: If A should happen to be an idempotent, then
0(X,Y) = YX , where 6 is as in Theorem 2.5 .
COROLLARY 2.6 Let S be a finite semigroup and AeS.
Then [E(D,)] = (1/[H,[) -

PA| .

97




MARKOWSKY

. THEOREM 2.7 Let S be a semigroup, AeS and let LAY
(i = 1,2) be the projection map (SxS —> S) on the
i-th factor. Then°

(i) n, : P, f\w (A)—> E(L,) is a bijection.
(i) m: P, f\n (A)—> E(R,) is a bijection.
PROOF :

(i) If YeE(L ) then Y is a right-identity for L and

hence (A, Y)eP f\n (A). Conversely, (A, Y)eP 1mp11es that

AY = A, YeLA implies that Y = XA for some XeS' by
Lemma 2.1 and thus Y = XA = X(AY) = (XA)Y = Y2. Thus
YEE(L,).

(ii) Proved similarly to (i).
REMARKS: The mappings in Theorem 2.7 are induced by
6 of Theorem 2.5
rem 2.5 , but we will just give a short direct proof.
AeS. Let BeD
then there exists a bijection between PA and P .
PROOF: If BeD then by Lemma 2.2 there exlst a,b,
c, deS’ such that caA Abd = A and aAb = B. If XeRA and

. The next theorem follows from Theo-

THEOREM 2.8 Let S be a semigroup , A

YeLA then there exist t,u ¢S such that At = X and uA =Y.
Let fA,B: P,—> Py be given by (X,Y)}——> (aX,Yb) and

similarly let fB,A : PB — PA be given by (W,Z)L———-

—> (cW,Zd).

(i) (aX)(Yb) = a(XY)b = aAb = B.

(ii) (aX)(Yb) = B and Bdt = a(Abd)t = a(At) = aX and
thus aXeRB.

(iii) (aX)(Yb) = B and ucB = u(caA)b =
Ybel

Yb and thus

B
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Thus fA,B It is

easy to see that these two maps are inverses.

and similarly fB A are well-defined.
»

" 3, Some Combinatorial Results

The following results are important in the sequel.

LEMMA 3.1 The number of permutations of n objects
with repetitions allowed which may be formed from p
objects of which k have been singled out to appear in
k .

ik e ||
L (-1 (p-1)

i=0

every one of these permutations is

where (?) is the binomial coefficient.

Proof: We will prove this lemma by the method of
generating functions [7]. The generating function for
the situation described above will be
Ef + ...)k(l +t 4+ %i + ...)p'k
K ik Dt -kt | & ik (p-it
(1E (- 1) (s ;e Je = i50(-1) (e .

*) (t+ = (et-1K(eHPk

n

But e(P-1T _ (p-i)" %]. Thus (*) reduces to

n e 8

0

o k n

L (I (-1 ( )(P i) ) =
n=0 i=0

Another proof of this lemma can be found in [3].

i
» which proves the lemma.
COROLLARY 3.2

If k=n (p > k) , then

n .
L -0 -1 =
i=0

Proof: This follows from Theorem 3.1 and the fact
that the number of possible permutations described in
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Lemma 3.1 is n! whenever n = k.

Remark: Corollary 3.2 actually holds for any p at

n .
all, since I (-1)1(2)(p-i)n is a polynomial in p of
i=0

degree less than or equal to n,

4. Some Basic Facts about the Semigroup of Binary

Relations.
Let X be a set. Then the set of binary relations on
X ( denoted by Bx) forms a semigroup under the following

operation : if A,BeBx then by A<B we mean {(a,c)eXxX I

there exists beX such that (a,b)eA and (b,c)eB } . If
X and Y are two sets with the same cardinality , Bx and
BY are isomorphic semigroups.

On occasion we will want to state some of our
results in a more general setting and hence we make the

following definition . Let X and Y be sets. By Bx y e
’

mean ZXXY, i.e., the power set of XxY. Thus Bx is just

B with a semigroup operation. Since B is not a

X,X X,Y
semigroup in general , by stating some of our results
within the context of BX y ve point out their combina-

1]
torial nature.

If AeB and xeX , then by A_, we mean the set
X,Y x*
{ yeY [(x,y)eA } . Similarly, if yeY , then A*y denotes
the set { xeX | (x,y)eA } . A s (A*y) is called a row

(column) of A. By R(A) ( called the row space of A) we

mean the set { |J Ax*l S <X}, and by C(A) (called the
xe$§
column space of A) we mean the following set

100
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{ y§¥ A*yl TQY} . If AeBx,Y » R(A) and C(A) form com-

plete lattices (see[l]) with respect to set inclusion
and union (join) with the meet being the union of all
elements which are less than or equal to each element

in the set whose meet we want. For more details see [8].

DEFINITION: Let n be a natural number. By n we mean
{1,...,n} .,

If n is a natural number , by Bn we mean Bn and by

Bm,n we mean BEJH . Naturally , Bn is isomorphic to Bx
where X is any other set of n elements . We will simply
write n , BX,Y’ Bx, etc. , and omit the statements let
n be a natural number , let X and Y be sets , etc.
The following are quite easy to prove ([4],[6],[8]).
PROPOSITION 4.1 : If A,BeB
(a} R(AB)CR(B)

(b) C(AB)EC(A) .

X then

PROPOSITION 4.2 : Let A,BeB,, then
(a) ALB iff R(A) = R(B)
(b) ARB iff C(A) = C(B) .

The proof of the following two Theorems can be
found in [8].
THEOREM 4.3 Let A,BeBx

are isomorphic as lattices.

. Then ADB iff R(A) and R(B)

THEOREM 4.4 Let AeBx - Then A is regular iff R(A)
is a completely distributive lattice.

The following is a slight generalization of a theo-
rem found in [8]. We are including it in detail since

we will need some of the details from it.
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THEOREM 4.5 Let AeBx Y
»
w' = X - w . Then the map f: C(A)

and for each weC(A) let

> R(A) given by
fw) = Yy Ax* is an anti-isomorphism of lattices.
xew'!

PROOF: Clearly f is well-defined .
f is injective: Let v,weC(A) be such that v # w

but f(v) = f(w) . We may assume that there exists

XgEW - V . weC(A) implies that there exists yOeY such

1)
that xoeA*yOC.w . Thus yoeAxo* - But xgev and thus

Therefore , there exists x,ew' such

Axo,gf(v) = f(w) ]

that yOEAxl* ,i.e. , xleA,yo , which implies that X, €W,

which contradicts the fact that xlew'.

f is surjective: Let SQX and consider ) Ax* .
XeS

Let T be the subset of X having the following proper-

ties: (i) v Ax* = UAx* ; (ii) for all UCX such
xeT xeS
that UAx* = UAx* , we have that UCT . We now

xeU xeS
claim that T'eC(A) . If T'#C(A) , then there exists

xoeT' such that for all UCT' where Xy

UFC(A). If yeY is such that (xo,y)eA. Then A*ynT # {)

eU, we have that

(since A.y¢ T'),i.e., there exists xleT such that
(xl,y)eA . Thus Ax LU ( UAx*) = UAx* , which by
0 xeT xeT

the definition of T implies that xoeT . This contradicts

the fact that xoeT' . Now we proceed to show that f is
order reversing.
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vew iff £(v)Df(w) .
(i) if v&w then v'Ow' and hence f(v) Df(w) .

(ii) the proof in the other direction follows from
the fact that if ZeC(A) , and Yex is such that

%A « = U A+ » then Yo z' . This last statement
X€ xeZ'
follows from what was proved earlier. But {J Ax* 2
xev'!
U AX* -+ U AX* = U A**V'JW'UV' >
xew' Xe V! xew' yv' X
viow' = vew . It is easy to show that any bijec-

tion between two lattices which is order-reversing both
ways is an anti-isomorphism ( it takes meets to joins
and vice-versa).

We need the following concepts and conventions for
the rest of this paper. We will write + or I instead
of {J and will use < for € and < for & , as well
as A for meet,

If AeBn, then R(A) (C(A)) is finite , and we define
the basis of R(A) (C(A)) to be the set of all join-ir-
reducible elements of R(A) (C(A)) . Clearly any element
of R(A) (C(A)) can be written as a join of elements of
this basis, and any element in this basis cannot be
written as a union of any of the remaining elements of
R(A) . It is easy to see that the subset of the join-
-irreducible elements of a finite lattice L (actually
we need only assume that the lattice is a lattice of
finite length) is the only subset of L which join-gene-
rates all of L but also contains no redundant elements.

- Thus we may say for At:Bn » R(A) (C(A)) has a unique

103




MARKOWSKY

basis Br(A) (BC(A)) . A somewhat different approach may
be found in [4] and [6] . Let AeBn , by pr(A) ( pc(A))
we mean IBr(A)I ( IBC(A)! ). It follows from Theorems

4.4, 4.5 and the fact that a finite distributive lattice
has as many join-irreducible elements as meet-irreduci-

ble elements [1] , that if AeBn is regular then pr(A)=
= pC(A) . We assume that the reader is acquainted with

the principle of duality as it applies to lattices and

will recognize which theorems and proofs have duals.

5. Applications to Bn

To obtain our chief results we will use the follo-
wing characterization of regularity.
THEOREM 5.1 Let AeBX . For each xeX , let

S, = {WeR(A)| xeN} and T = wgs W . Then A is regular
x

iff for all VeR(A) , V= I Tx .
xeV
PROOF: Since A is regular there exists an idempotent
CeLA (i.e. , R(A) = R(C) ). We first observe that

T = uéy C e vhere y = {uex| xeC .} , since clearly

A Cu* > Tx and since for each WeSx there exists a
uey

u ey such that Cu « < W . Furthermore , the following

w
are true:

(a) xeCu* => Cx*

| A

Cu* since C is an idempotent
and thus Tx 3_Cx, for all x ;

104
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(b) xeC , =T < C. and hence that I C, <

u p xeC,

£ T._ < C._, for all ueX . But since C is an idempo-
stu* x-

tent we have that Cu* = L C. for all ueX and from

xeCu*
(b) and the fact that all the elements of R(C) are
unions of the rows of C the necessity part of the
theorem follows. We now proceed to prove the sufficien-
cy part of the theorem.
Let CeBy be such that Cu* = Tu for all ueX (the

empty meet is the universal upper bound of R(A)) . Since

T eR(A) it follows that C is an idempotent and since
u

{T_} x Spans R(A), it follows that CeL, and that A
X Xe

is regular.
THEOREM 5.2 Let AeBn be regular , then the following

are true:
(1) ig.VeBc(A) , there exists xveV such that for

NeC(A) where xveW , V<W.,

(1i){ A, , | VeB_(A) and x is as in (1) } = B(A).
v .

Obviously , the duals of (i) and (ii) are also true.

PROOF :

(i) By Theorem 5.1 , V = xszx . Since V is join-

-irreducible there exists xveV such that Txv =V,

< W.

Thus for all WeC(A) , where xvew , we have V = TxV
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(ii) VeBC(A) => V = A*j for some jen => (xv,j)eA.
(*) If zeV then Axv* AL since teAx . =2 xVEA*t =>
v
A*j AL = zeA*t => teAz, . Thus Ax « 1s join-

A
-irreducible. Let V,WeBc(A) be such that V # W, then

xy # X and Axv* # Axw, . Thus IBC(A)l < |B(A)|and

dually |B_(A)] :_|BC(A)| , and we are done . Notice
that we have shown at the same time that pr(A) = pc(A).

Alternately , we may conclude the proof by observing

that if yeAs* » Sen , then there exists VeBc(A) such

that seV f-A*y . Hence , xVeA*y => yeAxv* , but by (*)
above we know that A_ :-As* .

NOTE: In Theorem 5.2 we prove rather directly that

if AeBn is regular , then pr(A) = pc(A) . It is possi-

ble to prove Theorem 4.4 rather directly using Theorem
5.1 as a starting point . The value of Theorems 5.1 and
5.2

regular element in Bn , without introducing any addi-

is that they allow us to work directly with any

tional machinery.

THEOREM 5.3 Let AeBn be regular , and let r = p_(A)=
= T .
=e (A . Themn p L p o T)m,- )™ where
A i= 0 i’YA —_—

M, is an integer determined as follows . Let ViseeosV

t

be the elements of C(A) such that {vl,...,vr} = B_(A).
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For each iet , let q. =|{ weR(A)| w < A A Lo fi-
—_— — i - b3
XEV,
¢ i
nally , let MA = I q; - (Note that a > 1 for all
i=1
iet since QeR(A)).
PROOF: If (X,Y)ePA then we must have that for jen
YJ* < A Ay*' Thus if X*j =V there exist at most
yeX,

Qs possibilities in R(A) for Yj* . Let ST = {(8,4)|

BeR(A) , 8eC(A) and & < A AL} . Clearly M, = |sT]|
xeb
We now make a series of assertions .
(1) For each (X,Y)ePA and jen it is clear that

(Xu55¥;4)€ST.

(2) Let ier (i.e., vieBc(A)), then (vi,Ax

«J€EST
\

1

is as in Theorem 5.2 . This follows from the

where x
Vi

proof of Theorem 5.2 (ii) , since we showed that

Ax « X Az*
'
i

whenever zevi .

(3) It is obvious that if X,YeBn are such that for
all jen , (X*j,Yj*)eST , then C(X)CC(A) and R(Y)CR(A).

(4) Let X,Y be as in (3) , then clearly for all jen
(XY 0 < Aja

(5) If (X,Y)ePA , each vy and each Ax

« (ier) must
v,

i

appear at least once as a column of X and a row of Y

respectively , since the bases of C(A) and R(A) are
107




e

Ape = T X Yo,

MARKOWSKY

unique and because of Theorem 5.2 .
(6) Let X,YeB be such that (X 5,Y5,)€ST for all

jen . Then (X,Y)ePA++ for each ier there exists kieg

such that Xep. = v, and Yk « A L.
i i v,
i
PROOF :
+: Clearly XeRA and YeLA . Let jen , then by (4)

above , (XY)j* < Aj* . By the last part of the proof of

Theorem 5.2 , there exists ACr such that A, .= I A
17 iea xvi

and jevi for all ieA. Let zeAj* . Then zeAxv x = Yki*
i

for some ieA . Since jcvi = X,,k » We conclude that
i

ze(XY)j*.AHence (XY)j* = Aj* for all jen and therefore

(X,Y)eP,.

> Let t = X, - From A = XY we have that
i ]

=I Since At* is join-irreducible , there

J

exists jen such that th =1 and Yj* = A, . Thus
=t . L.o= i 1 =

xvi eX*J and YJ* Axv « + We claim that vy X

i

*j

If X*j # v, » then by Theorem 5.2 X*j > v and there

exists ueX*j -V, Ax * :-Au* ( since XY = A). There

V.
1

exists zen such that v, = A*z -+ (xv.,z)eA , but since
i

108
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u¢vi we have that (u,z)tA-*Ax . i_Au, which is a
'
i

contradiction. Hence )(,,j =V, .

From the preceding , and from (6) in particular it
follows that by taking any element of ST and using the
first component as the k-th column of X and using the
second component as the k-th row of Y and seeing that
each of the r elements (vi,Ax «) (ier ) is used at

v,
i
least once , we will get (X,Y)ePA . Furthermore , it
follows that all (X,Y)sPA can be constructed in this

manner. Hence this theorem follows from what has just
been said and Lemma 3.1 A slight modification of the
above arguments will be used to calculate the number of

idempotents in LA and RA (Theorem 5.6) .

THEOREM 5.4 Let AeBn be regular , then

T N
[E@)] = /|8, ]) .20(-1)1(’{) M, - )7, where r = p_(A)
i=

and MA _13_15__1_1_1_ Theorem 5.3 .

PROOF: This follows immediately from Corollary 2.6
and Theorem 5.3 .

The following fairly well-known result follows
from Theorem 5.4 and Corollary 3.2 .

COROLLARY 5.5 Let AeBn be regular . If pr(A) =n

then IE(DA)I = (1/|HA|) n! .

THEOREM 5.6 Let AeBn be regular and k = pr(A) . Let
{vl,...,va} = C(A) and {wl,...,wa} = R(A) be such that
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(vpseensvd = B (A) and {wj,...,wm} =B (A) . Let

n. be the number of times Vv, appears as a column of A

and n: the number of times W, appears as a row of A. Then

k a
M) eyl = m(@p®i - (qp - D™ 1 (@"
i=1 i=k+1
@ JE®Y| = n(@H™ - @-0" 1 @M
S e 1 iskel &

where aQ; is as in Theorem 5.3 and qi is defined similar-

1y to q, but with the role of row and column spaces

switched.

PROOF: We will only prove (1) , since the proof of
(2) is dual. By Theorem 2.7 we need only calculate the
number of elements in PA(\nil(A) . Recall the proof of

Theorem 5.3 and in particular step (6) . We replace the
element X by A . The only condition we need place on Y

is that for at least one appearance of each vy (iek) ,

Ax «» Must appear as the corresponding row of Y ., For
V.
i

i>k , whenever v, appears as a column of A we may have

any of the a; possibilities appearing as the correspon-

ding row of Y , and thus the n, appearances of vy give
us (qi)ni possible choices for the corresponding rows

of Y . If i <k, we see that of the n, appearances of
Vi Ax » Mmust appear at least once as the corresponding
2
i

row , whereas other than this restriction we are free to
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permit a; choices for the corresponding row of Y . Thus
. n, ,.
by Lemma 3.1 there are (qi)n1 - (qi - 1)7i different

ways of picking the n. rows of Y which correspond to the

n, appearances of v, . Since all these various choices
i i

are independent the theorem follows.

REMARK: We will now turn our attention to the na-

ture of the quantities MA’ s, qi used above , and re-
late them to the lattice R(A). We will show that qi,qi,

and MA depend only on R(A) , and that MA = MA where

a
M! = I q! , as one would suspect on the basis of
A j=1 1
Theorems 5.3 and 5.6 . We will also say a few words

about n, and ni . We begin with a definition to help

collect all the quantities involved in one place and to

define them in a more general context.

DEFINITION 5.7 Let AeBm n

’

C(A) ,{wl,...,wb} = R(A) be such that {vl,...,vr} =

and let {vl,...,vb}=

Bc(A) and {wl,...,ws} = Br(A) . By Qi we mean

{weR(A)| w < A Ap,} and Q] we mean{veC(A)| v < A A*p}'

pev; pew,
b
Finally we let q; = |Q,| , a} = [Q}| , M, = iflqi ,
b . .
MA = I q! . If veC(A) we will sometimes write q(v) ,
. i
i=1

meaning a, where v, =Vv. Similarly for q'(w),Q(v),and
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Q' (w).

Note that the definitions above agree with those
we have used in the more special cases . The purpose of

this generalization is to show that qi,qi s MA and MA

are really combinatorial in nature and do not really

depend on the semigroup operation in Bn'

THEOREM 5.8 Let AeB n’ We will use the same sym-

’

bols as in Definition 5.7 above. Then:

(1) If we let T, = {jeb |vj is meet-irreducible and

v. £ vj} and if we let 6. = { veC(A)| v > I wv_.} then

— i

jeTi
q; = |e;| for all ieb . Of course a dual result holds
for q; ;
= M?
) M, =M
PROOF:

(1): Let f: C(A) — R(A) be the bijection of
Theorem 4.5 . For each ieb , let U, = {jegjvj vt

Thus v, = L v, . We make the following observations:
jeU, J

i

(a) Clearly q, = [{veC(A)| v :_f-l( A Ap*)}l .

EV.
14 1

(b) Let S, = {pev,]| Ap,eBr(A)} , then A Ap* = A Ap*.
pev, peSi

Clearly A A, < A A, . Let kevi » then there

P
pev, peSi
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exists jen such that A*j f-vi and (k,j)eA . Hence

there exists qug such that Adk*eBr(A) , Adk, f-Ak* ,

and (dk,j)eA . Thus dkeSi and pzs Ap* :-Ak* . Since
i

k was arbitrary , the result follows.
(c) peSi > Ap*eBr(A) and Ap* £ f(vi) .
+: peSi + psSk for some keUif\E_ + (p,j)eA for some

j such that A*j = vy

. But since f(vi) = A f(vp) and

peUi

jtf(vk), Ap* f_f(vk) and thus Ap*.i f(vi) .
. 3 - ]
+: Assume ptvi . Since f(vi) = I : Ax* , and pev
xev!
i
we conclude that f(vi) Z.Ap* . But this contradicts the
fact that Ap* £ f(vi) . Hence we must have that pev..
(d) From (b) it follows that £ 1( A A ) = £1( A A)
pev, P peSi P

= I f-l(Ap*) . From (c) it follows that f induces a

peSi

bijection between Ti and Si and (1) follows from (a)
and (d).

(2): Let f be as in (1) . We claim that q'(f(a)) =
[{ ieb] aeei}| for all aecC(A) . We prove this in the

following steps:
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(a) The following two sets are equal: Q'(f(a)) and the Since £ is a bijection we have that M'A = T q'(w) =
set B_ = {veC(A)] v < A v_} whereU = weR(A)
2 Tceu, © a : 8.} = = |o.b =
a T q'(f(a)) = L | {1EE_| aev.r = | b i
aeC(A) aeC(A) 1ed
= {ceb | V. 1s join-irreducible and a Z_vc} . This iib a = M, -

follows from the fact that Q'(f(a)) = {veC(A) |v <

A A, )} and the fact that (b) and (c) in the proof .
pef(a) P ger any need to use the term MA and we will use MA as

REMARK: In view of Theorem 5.8 , there is no lon-

of (1) hold with appropriate changes since £ has the the sum of the a; and as the sum of the qi . We will

same properties as f. give some consequences of Theorem 5.8 and then make

(b) viEBa 1f£ aeei. clear the lattice-theoretic properties of the various

; ities involved.
Traed; > a> rov L Ifv. g B, there exists ceU_ quantities inv

T
peT; P COROLLARY 5.9 Let A,BeB,  , A'cB, _ (where
such that v, £ v and v £ a . Since C(A) is a lattice AT = {7, | (x,y)eA} ) , and E,FeB_ .
of finite length there exists keb such that vy 1s (1) If £ is an isomorphism between C(A) and C(B)

= 11 aeC(B) and hence M, = M.
meet-irreducible , v, >v but v, dv, . Since aco,, then q(f(a)) = q(a) for all acC(B) and hence M, = M,

=M, .
a 2 v, and hence a > v_ which is impossible. (2) EDOF > Mg =M

+: This proof is dual to the proof above , i.e., vieBa 3) MAT = MA'

PROOF :
(1): follows from Theorem 5.8 (1) since f is an

isomorphism and from the definition of M, and My -

< Vv; 2v, for all ceU . If atei there must exist

peTi such that a Z_vp . Again since C(A) is a lattice

of finite length there exists keb such that vy is (2): follows from (1) above and from Theorems 4.3

join-irreducible |, Vi < vp , and Vi £ a . Hence keUa and 4.5 .

(3): follows from Theorem 5.8(2) .
PROPOSITION 5.10 Let A,BeB  be such that Bel, .

Then there exists an isomorphism f:C(A) —> C(B)
such that q(v) = q(f(v)) and the number of times v

and thus \ f-vk , i.e. , vy f-vp which is impossible

since psTi . Hence aeei

Thus q'(f(a)) = [{ ieb | aed, }|  for all aeC(A)
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appears as a column of A is equal to the number of times

Furthermore , we have

f(v) appears as a column of B .

that veBC(A) > f(v)eBc(B) . Of course a similar
theorem is true in the case where BeR, .
PROOF : Since BeLA » by Lemma 2.1 there exist

X,YeBn such that XA = B and YB = A . Let fx:C(A) —_—
C(B) be given by fx(v) = {je& | there exists ken such
that (j,k)eX and kev } . Define fy from C(B) to C(A) in
a similar manner. If we were viewing elements of Bn

as matrices |, fx would correspond to multiplying a

column of A by X on the left. Since YXA = A , etc.,
it is not hard to show that fx and fy are inverses of

one another and are lattice isomorphisms . Thus by
Corollary 5.9 q(fx(v)) = q(v) . Since XA = B , fx(v)

appears as a column of B as many times as v appears as
a column of A. Since fx is an isomorphism , v is

join-irreducible+s fx(v) is join-irreducible,

One would suspect that Proposition 5.10 is true
from Theorem 5.6 since clearly IE(LA)I depends only on
LA'

DEFINITION 5,11 Let L be a complete lattice and let

wel . Let T = { 6eL | 6 is meet-irreducible and

0 # w1} . Define q(w) = |{ veL| v > I 61} .
eeTw

REMARK: Because of Theorem 5.8 we see that the

definitions of q and T agree with the ones given earlier
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in the case where L = C(A) . To calculate MA on the

basis of the characterization given above is easy in case
C(A) 1is small or has a very regular structure.
EXAMPLE: Let AeBn be such that C(A) is isomorphic
to the lattice L formed by the power set of some set of
r elements . Clearly MA = I q(w) .
wel
The meet-irreducible elements of L are obviously

the r sets which contain r - 1 elements . IT,| > 2

for all welL , except for § and the r singletons.
Hence , if w # § and w is not a singleton , q(w) = 1 .
If w is a singleton , ITwl = 1 since Tw just consists

of the complement of w and hence q(w) = 2 . Finally,

ifws=d , T, =0and qw) = 2" . Thus M, = 27er - 1,

DEFINITION 5.12 Let AeBm n ° Let veC(A) . Then

’

define U = {8eB_(A)| 6 £ v } and r(v) = |{weC(A) |

w< A 6} and No= 2 r(v) .
eer veC(A)

THEOREM S.13 Let AEBm,n , then MA = NA .

PROOF: Since C(A) and R(A) are anti-isomorphic
with respect to f of Theorem 4.5 , it follows that
_ 1
Uv = f (Tf(v)) and that q(f(v))

r(v) . Hence by

Theorem 5.8 it follows that MA = NA » since q(f(v))

(where f(v)eR(A) ) is the same as q'(f(v)) which was
defined earlier.

REMARK: The purpose of Definition 5.12 and
Theorem 5.13 is to enable one to work with the join-
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irreducible elements as well as meet-irreducible ele-
ments . Note that in Theorem 5.4 it is necessary to know
IHAI . In [2] it is shown that IHAl is equal to

IAut(C(A))I » Wwhere Aut(C(A)) is the group of lattice
automorphisms of C{(A) . Thus if one constructs C(A) one
can figure out IAut(C(A))I and hence IHAI . Since we

are interested in the case where AeBn is regular , C(A)

is distributive . The following theorem shows that
[Aut (C(A)) | = IAut(BC(A))I where B_(A) is the partially

ordered set formed by the join-irreducible elements of
C(A) .
THEOREM 5.14 Let L be a finite distrbutive lattice.

L. S is a partially ordered set . There is a natural

group isomorphism between Aut(S) and Aut(L).
PROOF: Let S = {vl,...,vt} and let

F:Aut(S) —— Aut(L) be given by F(f)( & vi) = I f(vi)
icA ieA
where A(ZE_and feAut(S) . Recall that every element of

L can be written as a join of the vy - We first show
that I v. < Iv. <« I f(v,)< & f(v.) where U,TCt.
PR S i . i’ — . i -
ieU ieT ieU ieT
*: Since L is distributive , for each jeU there

exists pch such that vj :'vp [1]. This implies that
j

f(v.) < f(v. )
] Jp
+: Same proof as above since f'leAut(S) . Hence

F(f) preserves order on L and has an inverse F(f-l),
and thus is a bijection . Thus it is easy to see that
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F(f)eAut(L) . F is clearly injective since F(f) = F(g)
implies that f(vi) = g(vi) for all iet which in turn

implies that f = g . F is surjective since any element
of Aut(L) restricts to an element of Aut(S). F is
clearly a homomorphism.
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