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We show that there exist a set of polynomials {L, | k =0, 1 - - -} such that L, (n) is the number
of elements of rank k in the free distributive lattice on n generators. Ly(n)=L,(n)=1for all n
and the degree of L, is k—1 for k=1. We show that the coefficients of the L, can be
calculated using another family of polynomials, P, We show how to calculate L, for k =
1,...,16 and P, for j=0,...,10. These calculations are enough to determine the number of
elements of each rank in the free distributive lattice on 5 generators a result first obtained by
Church [2]. We also calculate the asymptotic behavior of the L,’s and P;s.

1. Introduction

The question of enumerating FD(n), the free distributive lattice on n
generators, for arbitrary n, was first posed by Dedekind in 1897 [4]. Many authors
[2-13, 15-18] have concerned themselves with this problem. Exact answers are
known only for n=<6: Dedekind (n=1, 3; n=2, 6; n=3, 20; n=4, 168)
[4]); Church (n =5, 7581) [2]; Ward (n = 6, 7,823,352) [ 16]. There is some question
as to the value of |[FD(7)| (see Church (2,414,682,040,998) [3] and Lunnon
(2,208,061,288,138) [11]). Korshunov has just recently announced an asymptotic
formula for |[FD(n)| [10].

Following the analysis in Birkhoff [1], we consider FD(n) to be the set of all
closed from below subsets of the power set of m={1,..., n}. (For unfamiliar,
undefined terms consult [1}.) Thus an element of FD(n) has rank k if it consists of
exactly k subsets of n. Thus FD(n) has 2" + 1 levels. The polynomials L, which
we present in this paper enumerate the number of elements of rank k in FD(n).
By symmetry, it is easy to see that for all k, n with 0k =<2", L, (n)=L,._.(n).
Thus

-1

|FD(n)|=2( L,-(n))+L2»-n(n).
-0

J

Our analysis will enable us to compute L, (5) for k =0;..., 32, and hence FD(5).
The L,’s are similar in nature to the chromatic polynomials associated with
graphs. Furthermore, we show that the coefficients of the L,’s can be derived
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from another family of polynomials {P;}. The nature of the P;’s is somewhat more
involved than that of the L,’s. We described the asymptotic behavior of both the
L,’s and the P;’s.

We introduce some notation which we will use throughout this paper. As we
have already indicated, for an integer n, we use n to denote {1,2,..., n}. Note
0=0. For a set X we use |X| to denote its cardinality and 2% to denote its power
set. For a real number r, we use |r] to denote the greatest integer not exceeding r
and [r] the least integer not smaller than r.

The results in this paper were derived in the author’s dissertation [12] and some
were stated without proof in [13].

2. The polynomial nature of L,

2.1. Theorem. For k=1

k—1

n
L= cr (")
where a, = |log, k| and C(1, k) is the number of closed from below subsets of
cardinality k of 2* which contain all singleton subsets of t. Clearly, Ly(n) = L,(n)=
1 for all n.

Proof. For each X eFD(n) with |X|=k, X contains some number t of singleton
sets with 2°=k. A little reflection shows that once we choose t of the n singleton
subsets of n, we can embed the closed from below subsets of 2° of cardinality k
which cover all the singleton subsets of ¢ into FD(n). O

Remark. Some unpublished notes of the late R. Church which are in the author’s
possession prove that he was aware of Theorem 2.1 and give the values of L, for
k=0,...,12 and some of the coefficients of L, for k=13,...,16. However,
these notes do not exhibit any additional results about them and thus it is difficult
to ascertain exactly what Church knew about the L,.

2.2. Corollary. For k=1, deg L, =k—1 and

lim —“Lk(")ﬁlf,_l)!= 1.

n-sox n

Proof. This corollary follows from Theorem 2.1 and the observation that C(k —
I,k)=1forall k=1. C(k—1, k) =1 because the only subset of 2*~* consisting of
k sets and containing all the singleton sets is the set {@, {1},...,{k— 1}}. O

Remark. Note that 0,1, .., a, —1 are among the roots of L, (n). These are the
only possible non-negative integral roots of L, (n), since if n=aq,, there exists at
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least one closed from below subset of 2% having cardinality k. It is possible for
L, (n) to have negative integers as roots, e.g. —1 is a root of L,(n) and —9 is a root
of Ls(n). All the L,(n) up to k=7 have only real roots, each with multiplicity
one. Whether this is true in general is not known to the author.

Our next goal is to show that the coefficients (the C(¢, k)) of the L,’s can be
calculated from a family of polynomials. We first introduce some notation.

Notation. Let €(t, k) denote the collection of all closed from below subsets of 2°
which have cardinality k and contain all singleton subsets of t. Thus C(t, k)=
|6(t, k)|. We let @;(k)=%(k—j—1,k) and Pi(k)= C(k—j—1, k). Furthermore,
we let 4€,(a, b)={Se C(x, b)| such that no singleton set is a maximal element of S}
and C,(a, b)=1%,(a, b)|. Note that we use a, to denote [log, k].

Remark. Note that

k—a,—1

Thus P, gives the first coefficient of L, etc. Note also that Pi(k)=C(k -1, k)=
1 for all k =0. We will soon show that for a fixed j, P;(k) is a polynomial in k of
degree 2j.

3. The polynomial nature of P,

Notation. Let A be a collection of sets and m an integer. We use S(m, 4) to
denote [{Te A||T|=m}|.

3.1. Lemma. Ci(a,b)#0 if and only if 2°=b=a+1+|3(a+1)]. Furthermore,
Ac¥$(a,a+1+[Ha+1)]) implies that S(m, A)=0 for m=3 and consequently
S(2,4)=[3(a+1)].

Proof. Clearly b>2" implies that C,(a, b)=0, since 2° cannot contain any closed
from below subset which has more than 2* elements.

Let m, be the smallest integer such that C,(a, m,}#0. Suppose m, <2°. If
Xe%,(a, m,), then by adding a minimal element of 2°—X to X we see that
Ci(a, m, +1)# 0. Continuing in this way we see that C,(a, b)# 0 for all m, <b=<
2°.

Thus we need only show that m, =a+1+ [3(a+1)]. Clearly we can cover all
the a singletons of 2% by |i(a+1)] two element subset of a. Thus m, <
a+1+|3(a+1)]. It is clear that |i(a+1)] is the smallest number of two element
subsets of a which contain all the singletons of 2°. If A € €(a, b) for some b, it
follows that for each singleton {x} of 2* there exists some two element subset
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u, €A such that {u}<u, Thus S(2,4)=|3(a+1)] and hence |A|=
a+1+ |3(a+1)], which proves all the various remaining claims made by the
lemma. [

3.2. Theorem. For j=0,

Pi(k)= ‘Z C,(i,i+j+l)(k_§_1).

i=m
where m; is the smallest integer such that

2"z m+j+1>2m

Proof. Let A € #,(k). This means that 347" S(i, A)=j. Let a, be the number of
singletons in 4 which are not maximal elements.

From the proof of Lemma 3.1 it follows that a, <2j. Since each nonempty
non-singleton member of A must be some union of the non-maximal singletons of
4, it follows that j<2% —a, —1, and hence that a, = m;. Thus every element of
(k) can be constructed as follows. We choose i elements ay,..., a; from
k—j—1 (where m;<i<2j) and pick some element Z from %4,(i,i+j+1). Pick
the obvious bijection f between i and {a, ..., a;} and let f:2'— 2!%+ - %} pe the
bijection induced by f. Let A=f(Z)Uk—j—1. Then AeP,(k), and every ele-
ment of &;(k) can be constructed in this way. Hence the theorem follows. [J

3.3. Corollary. For j=0, P,(k) is of degree 2j and has leading coefficient equal to
1/(2'j1). Thus asymptotically, Pi(k) is k*/(2'j1).

Proof. This result follows from Theorem 3.2 if we show that Ci(25,3j+ )=
(2)1/(2'j1). To find out how many distinct collections of j 2-element subsets of a 2j
element set, T, cover all singieton subsets we proceed as follows. Consider all L
permutations of T and read off two consecutive elements at a time from left to
right and take them as the j 2-element subsets. Clearly, every collection can be
obtained in this way with multiplicity 2/j! since the order in which we pick each of
the elements in a 2-element set and the order in which we pick the 2-element
subsets are irrelevant. [J

Remarks. The next section will present a reasonably straightforward approach to

calculating P, for j=0,...,10 and will present some additional information on
the leading coefficients of P,

4. Calculating P,

4.1. Lemma. Let X € ?,(k). S(q, X) >0 implies that 29— q—1<j.
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Proof. If S(g, X)>0, then certainly there exist at least 29—g—1 nonempty
non-singleton elements in X. But j is the exact number of nonempty non-

singleton elements in X. [J

4.2. Theorem. For k=0 we have that:

M) Pol)=1;

@ P,<k)=((k;2))=("’2);

3 P2<k)=(<k;3))=3("‘3)+3("‘3);
2

@ Pyk)=

(k;)): 15 (k—4)+30 (k_4>+16 (k_4)+<k_4)

8 7 6

|
) P4(k)=((k£5))+<k'5)=105 (k_5)+315 (k_5>+33o(k—5)

+135(k_5)+15(k—5)+(k_5);

o ran-(U 2 (505))

o &(k):((";))+(k;7>((";)_3).,

® p,(k)=(("§8>)+(k58)((";)_3)+6('38);
e
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(10)  Py(k) = ((k —;10))+(k—310>((k—§10)_3)+6 (k;w)((k—;m)_s)

(1
(- a)esem)
el
SR (R ST
(057

k-11 (k—ll) (k—ll)
+ + .
+60( s ) 10 5 4

Note that for 0=<<j<5 we have expanded Pi(k) in the form of Theorem 3.2.

+20

)
")

Proof. What we basically do is investigate all the “closed from below”-like
structures which it is possible to erect on k —j—1 singletons which consist of i
elements. (1) is trivial. We note that by Lemma 4.1, if 1 <j<3, S(3, X)=0 for all
XeP.(k). Hence in these cases $(2,X)=j, and the result is immediate. Also
from Lemma 4.1 it follows that if 4=<j=<10, S(4, X)=0 for all Xe P;(k).

We observe that any structure which can be erected with j elements can be
erected whenever we are allowed to construct structures with j+1 elements, in
the sense that we can preserve the identical elements and simply add on another
two element set. Thus, as we go from j to j+1 we need only discover the
fundamentally new structures which become possible. This will become clearer
shortly as we apply this principle. The reader might get an idea of what is being
discussed by closely examining the forms of the Pi(k)’s as they appear in the
statement of this theorem.

Thus in going from j=3 to /=4, we can still erect a structure having only two
elements sets. This gives us the first term. However, we have a “new structure”
which is possible, namely,

k —5 singletons
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We note that in order for S(3, X)=2, we must have j=7. Hence no “new
structures” appear for j=5, 6, and we get Ps(k) and P¢(k) simply by adding on
additional two element sets.

For j=7, a “new structure” appears:

k — 8 singletons

This contributes the term 6(*;®), since for every choice of 4 singletons, there are 6

ways to erect this structure. All other terms are holdovers, with additional two

element sets.
For j=8,

k -9 singletons

and .

k -9 singletons

make their appearances, contributing 15(*3°) and 20(*%) respectively,
For j=9,

k — 10 singletons

appears, contributing 4(x ).
Finally for j =10,
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and

(all with k—11 singletons) appear, contributing 60(*3'"), 10(*3'"), and (*31)
respectively. O

Remark. We were not just fortunate, in that we were entirely able to dispense
working with any sets X such that S(4, X)>0. In general, if we wish to calculate
ED(n), we need to know L, (n) for 0<k=<2""'. Since C(n—1, 2" =1, we need
only to be able to calculate Py»-1_,_,(k). But by Lemma 4.1, we see that S(n—1,
X) =0 for all suitable X since

2= (n=1)~1=2"""—pg2" '—n-1=|

Thus to calculate FD(n), we essentially only need to consider closed from below
subsets having no elements of cardinality greater than n—2.

It is interesting to note that Lunnon [11] calculates the values for FD(n), via a
two stage reduction, so that he need only consider various properties of elements
of FD(n—-2) in order to calculate FD(n). He asserts [11; p. 178, line 4] that a
three stage reduction produces nothing useful.

The reader will also note that we have achieved a two stage reduction, i.e., we
need only work with sets of cardinality <n—2 to calculate FD(n), via the L,(n)’s
C(t, k)’s, Pi(k)’s and C,(a, b)’s. However, in trying to push the reduction one step
further we ran into trouble. For one thing, it is no longer clear what C,(c, d), i.e.,
the proper extension of the sequence C(t, k) and C(a, b) should be.

Note that the argument of Theorem 4.2 can be generalized to yield another
proof of Corollary 3.3. We conclude this section by giving closed formulas for the
first ten coefficients of P, for all j=0. The derivations of these results can be
found in [12]. We give some preliminary material first.

Notation. Let p, g, r be natural numbers. Let T< p. and $<2F be such that Xe S
implies that [ X|=r. By Z(p, S, g, r, T) we mean

q
Mes ... alacp,|a|=tforallicgq, LIJ a>T,

{ar,...,}NS =9, and o # a; if i#j}.

If S=2° and y<p, by S, we mean SN2". Note S, =S.
The following result is just a straightforward application of the principle of
inclusion and exclusion (see [14]).
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4.3. Proposition. Let p,q, 1, S and T be as above, then

((p-i)-ls.,—al>

Z(p, S, qr T)=E -1 Y
lae|=i q
4.4, Theorem. (1) For all j and m=0,1,...,4, we have
CRj~-m, 3j—m+1)=Z2j-m,9,]j,2,2j—m).
(2) Forall jand m=5,...,9, we have
C,2j-m2j—-m+1)=Z2j-m,9,j,2,2j—m)

+(2j;'") ZQ2j—m, A%, j—4,2,2j—m—A)

where A <2j—m is some three element set and A* is the set of all two element
subsets of A.

Remarks. Note that the quantity Z(p, S, g, r, T) is not simple to evaluate_in
general. The argument of Corollary 3.3 shows that Z(2},9,j,2, 2j)='('2j)!/2fj!.
A similar argument shows that Z(2j—1, 9,i,2,2j-1)=2jNG~-1/2'j! which
enables us to write down the second coefficient of any P;.

5. The L, and FD(5)

We conclude by deriving L, (n) for n=0,..., 16 and showing how to calculate
the number of elements in FI(5) by rank (this result is first due to R. Church [2]).

5.1. Theorem. For n=0,
¢)) Lo(n)=1;
(2 Lyn)=1;

@  Lm=(])=n;

@)  Lyn)= (;) =(n%—n)/2;
®  Lam=(3)+(3)=e=nys;

+ (") =(n*+6n>-25n%+18n)/24;

4

© Lim=3;
(

V)] Lg(n)=3

4

;') +6(") + (;’) = (n®+20n* - 85n>+100n2—36n)/120;
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(15)

(16)

(17)
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=35l ()
L= (5) (3 s(2) o 15(2) 1),

Lo =(3) a1 3.
i< () 2252102 () ).

Ln(n)=13(")+332(">+1385(") (") ("
4 5)*1:385( )+ 1,330( 7).+ 378(

w3o(g)+ (o)

W

»

L (n)=10(")+420(") (") n
12 4 5 +3,243 6 +6,020 -

+3,276(;> +630( )+45(10) (1"1);

L =6(n> (n) n n n
13(n) 4 +500 5 +6,325 6 +20,979 7 +2O,531(8)+7,140(;)

+990(1r('))+55(11> (1'12);

L,u(n) =4(;’) +560(;') + 1o,925(2)+59,619( )+99 680(")

+58,989()+14 190( )+1485(11)+66< ) (1';)

lq(n)—( >+600<;)+17 345( )+145 050( )+393,540(;')

n
9

+2145( 2>+ ( ) (1';);

+379,764( ) +149, 115( )+26,235<1"1)

+1,992, 144;’

L,G(n)~< )+616(;')+25 945( )+314,405<;')+1,313 260(">
>N

+1226799( >+ (")
) 1o) +341.220( )

vl ) a0m( )2 )
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Proof. For k=0, ..., 15 the values of L,(n) follow from Theorems 2.1 and 4.2.
For k=16, the first 10 coefficients starting with (f5) can be calculated from
Theorem 4.2. Note that the coefficient of (5) is C(4, 16) which is clearly 1. O

Remark. Note that we can calculate the number of elements in FD(5) of a given
rank from Theorem 5.1, since L,¢,,(5) = L,¢_,(5) by the observation we made in
the first section. Note also that we have the means at our disposal to calculate all
the coefficients of L,,(n). By Theorem 2.1,

Liy(n)= 2 C(t,17) (:’) .

Theorem 4.2 allows us to calculate C(t,17) for t=6,...,16. Note that

C(5,17)= L,(5)= L,5(5) =605, so that we know L,,(n) entirely.
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