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It was shown in {11] that every finite group is the maximal subgroup of a
semigroup B of all binary relations on a finite set X. This result was extended
by Plemmons and Schein [10] to the general case, using a theorem due to Zaretskii
(14]. Clifford has given an entirely self-contained proof of this interesting result
in (7.

The purpose of this paper is to count the number of maximal subgroups in a semi-
group By of all binary relations on a finite set X. This work has connection with
previous work [2]-[5] by the first author, as well as from recent work of the
second author (8]. In order to summarize our results, we find it expedient to
first restate some of the definitions and notations.

Let X={x]. %, -+, x) and assume |X|=7>0, where |X| denotes the card-
inality of a set X. A binary relation on X is a subset of XxX, and the set of
all binary relations on X is denoted by B,. The product a8 of two relations or
and 8 on X is defined to be the relation

af={(a, b):(a, ¢)E a and (¢, b) €8 for some cX}
The operation is, of course, a generalization of the rule of composition of func-
tions. Hence By is a semigroup.

By a (0, 1)-matrix of order n is meant an #Xn matrix of 0's and 1's. Let B,
denote the set of all such matrices. We consider the sum and product of members
>f B, to be the sum and product over the Boolean algebra B={0, 1} of order 2.
Then B, is a semigroup under matrix multiplication, and the mapping

o« —s A=(a‘j)=[1 if (z,, x.}) (=34
0 otherwise
8 an isomorphism of B, onto B,. Because of this correspondence, it is convenient
‘0 employ the same terminology and notation for the both the elements o € B ¢ and
‘he corresponding matrix A€ B,. In the remainder of this paper we shall work
with (0, 1)-matrices.
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Let V,(B) denote the set of all n-tuples over B. The system Vn(B) together
with the operation of component-wise addition is called the (0, 1)-space of dimen-
sion #. A nonempty subset W of V,.(B) is said to be linearly independent if the
zero n-tuple 2=(0, 0, ---,0) is not in W and no member of W is a sum of other
members of W, A subspace of V,.(B)isa honempty subset closed under addition,
A linearly independent subset of V,(B) that generates a subspace W of V,(B)
under sum is called a basis of W. A basis always exists and is unique {2), With
A € B, we associate the following sets: (i) the row space R(A)={x4:xc V. (B},
(ii) the column space C(A)={Ax: x € V*(B)} where V(B)= {y' e V,(B)} and y’
denotes the transpose of y. For AE B, the basis of the subspace of V,(B) gen-
crated by the nonzero rows of A is called the row basis of A4 and jts cardinality is
called the row rank of A. The definition of column basis and column rank are
defined in a similar manner, Let 0,(A) (0,(4)) denote the row (column) rank of
A. We remark that A € B, need not have p,(A)zpc(A) [2].

In order to discuss maximal subgroups of B,. we shall need the following ideas.
Two elements a,b of an arbitrary semigroup S are said to be Z(F)-equivalent
iff they generate the same principal left (right) ideal in . The relation
FLNR=F, while the join N B =D, These equivalence relations are called
Green's relations on S, The & (#, 2, D)-class containing @ will be denoted by
&z, (#,.#,, D ). The Green’s equivalences %, .#, #, and D are discussed in
{6] for an arbitrary semigroup S and in [2], (81, {10]-[12), and (14] for the semi-
group B,. An element e of an arbitrary semigroup S is called idempotent if eZ:e.
It is well known that if an #-class contairs an idempotent it is g group. Any
two such # -classes in the same Z'-class are isomorphic and have the same cardinal
number [6]. If some @& S is regular (i .. a&aSa), then each elemcn* of ga is
regular and .9“ contains idempotents. In this case there is associated with Qa a sub-
group of S, which is isomorphic to any # -class in 9, that contains an idempotent
[11]. Since each & -class contains at most one idempotent [6], the enumeration of

B,. We define Dy = {regular D—classes of matrices A€ B, with 0,(D=k=p,(A)}.
We will determine D:. where 0<k<C4, and then figure out the number of idem-
potents in cach element of D,

In order to carry out this enumeration we need the following basic results, If
AEB,, then R(A) forms a lattice under set theoretic inclusion, The following
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basic results are due to Zaretskii [14].
THEOREM 1. Let A, BE B,, then ADB iff R(A) is lattice isomorphic to R(B).

THEOREM 2. Let AE B,, then A is regular iff R(A) is a distributive lattice.

It follows from these results and some basic results of la}ttice theory [1] thhziit
ID;,'] is equal to the number of nonisomorphic distributit/e lattlf.:&s of length k. T &;
number in turn is equal to the number of nonisomorphic partially :)rdered sets o
k-elements [1]. Thus, ID:I depends only on %, and we denote (D! by m,. The
fact that ID:| depends only on %k was also proven using a slightly dlff.ere.ni.: ap-
proach by the first author in [4]. By D:i, i=1, 2, -, m, we mean the individual

elements of D:. The following theorem will be useful in enumerating the sub-

groups of B,
THEOREM 3.
E |l oo 1] 2| 3 4] s | 6 7 ‘
m, ‘ 1 1] 2] s 6 | 63| 318 | 206 l

PROOF. The proof follows from the preceding remarks and the enumeration of
rtially ordered sets found in [1] and [13]. ‘ . .
paLet G(n, kb, ©), i=1, 2, -, m,, denote the set of mutually isomorphic maximal

m, -
=U ] , k) is the set of all
subgroups of D:’., and let G(n, k)—'_L=JlG(n. k, ). Thus G(n, k)

maximal subgroups of B, contained in D;. Finally let G(n) denote the set of all

maximal subgroups of B, then

n m, .
lG(n)lszo (.Zl?IG(ﬂ. kDD
= v= . .

From what has been said we get the answer to our problem, by examining the
unique (up to isomorphism) lattice which is associated with each regular Z-class
D:i obtained by considering the lattice which is obtained by copslderlng the row
space of any element of D:'. as a lattice in a natural way.

Now to find |G()|, we focus on computing |G(rn, k, )| for. 0§k§4Hand
1<<¢<m,. In the following tables, the column headed “Diagram glves.the asse
diagram of the partially ordered set which is associated with the canonical lz}ttl:e
of D:i. which depeflds only on % and i. Let o(G(n, %k, §)) denote the order of the
groups in G(n, k&, f).
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_ THEOREM 4. For k=0, 1, 2, and 3.

E i | Diagram ] IG(n, B, D) . o(G(n, k, )
0‘ 1 ] 1 | 1
1.1 ‘ o) l 4"—3'l } 1

1] o o (@"—28H+7") /2 l 2

2 T
2 { z 1 8" — 21" +6" ‘ 1
0 ) (18" -3(17)"+3(16)"~15")/6 [ 6
I 15" —3(14)"+3(13)" 12" 1
) O/O\D 5" —3(14)"+3313)"-12")/2 2
4 ’ 0\/0 (5" -3014)"+3013)" - 12")/2 2

ol o ” n n ”

5 1 2 13" -3312)"+3(11)"~10 1

FROOF. Since the number of maximal subgroups of B, is equivalent to the num-
ber of idempotents in B, we may identify |G(n, k, £)| with IE(D;-)]. This set
of results is proved in [3].

Before we continue we need some additional resuits. The following appears in
[91.

THEOREM 5. Let AEB,, then the Schutzenberger group associated with D, is
isomorphic to the group of latlice isomorphisms of R(A).

To help visualize this, we need the following result which appears in [8].
THEOREM 6. There is a natural isomorphism belween the group of automorphisms

of a finite distributive lattice L and the group of automorphisms of the partially
ordered set formed by the join-irreducible elements of L.

The theorems above mean that for A€ D:i. (H | =0(G(n, k, i)) depends only

on £ and ¢, and in particular on the automorphisms of the partially ordered set
of % elements formed by the basis of R(A).
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THEOREM 7. For k=4,

Diagram \ 1G(n, 4, DI ‘ o(G(n, 4 ©)

Sl A e
[ \ 000 ol (35"-4(34)"+6(33)"—4(32)"+31")/24 '| 24
2 \ 1 : \ (26"~ 4(20)" +6(26)" ~4(25)" +247)/2 2

o -
(25"—4(25)"+6(24)"—4(23)"+2z")/z 2

L Moo MO B
Loy ‘ C\c/’ o ‘ (26" —4(25)" +6(24)"— 4(28)" +22)/2 2
5 " i i (23" —4(22)" +6(21)" — —4(20)"+19")/2 2

/

"T % o ‘ 0" — (21" +6(20)"—4(19)" +18" B

i o/j;\; “ (28" — 427 +6(26)" 4(25)"+24")/6 6

s | \T/’—‘ (2" — 427" +6(26)" —4(25)"+24")/6 6

_;— I\I \ of"— 4(23)" +6(22)" —4(2)" + 20" \ 1

T a{;/° \ 03— 4(22)"+6(21)" —4(20)" +19" 1
o —4(22)" +6(21)" —4(20)" +19" \ 1

o@o \ (22" —4(2D)"+6(20)" -~ 4(19)" +18")/2 \ 2

\ 16 l 19" — 4(18)"+6(17)"—4(19)" +15"
|

PROOF. Let us consider the partially ordered set represented by diagram (1) call
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it . By considering the ring of all subsets of a which are closed from below we
get a distributive lattice [1]. In this case where the partially ordered set is the
basis of the row space of a binary relation, the corresponding lattice, is the
lattice which would be formed by the whole row space. Thus in this case we get
the lattice L; represented by diagram (1°).

FaT

As is proved in [8], the number of idempotents is equal to
k .
kb .
o (-D'(f) D =D")/1H 41 (%)

where AED:.' for some ¢ and M(A4) is the idempotent number of the matrix A.
Thus we are left with the task of calculating the idempotent number IM(A),
since all the other quantitics in (*) may be readily calculated. We will carry
out the calculations in details for L, and we have stated the result of the analog-
ous calculations for the other lattices in the table above. In (8], a procedure is
given for the calculation of M(A), and we will briefly explain how it works, but
will not present the proof here.

We first need to identify the meet-irreducible elements of L,, and these are
quite clearly the elements of @y, @3 a;, and a5 Let wEL,, 0=layy a3 o,
als}. Following [8], we define B(w)={x€0 : x3w}. Continuing we let v, be the
join of all the elements in B(w) (Note: if B(w) is the empty set, then the join is
the 0 element a;), and we let g(w) be the number of elements in L; which are
greater than or equal to v, We calculate the number ¢(w) for each w& L1 and
the number M(A) is the sum of all the ¢(w)’s. Thus if w=a,, we get that v, =a
and consequently ¢(w)=1. Similarly, if w=ay; we get »,=16, and ¢(w)=1.
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In fact, g(w)=1 for all of the elements of L), except for a;, a, as a, and as.
For w=a,, a3 a, as g(w)=2, while g(a;)=16. Thus in this case M(A)=11+
(4)(2) +16=35. Hence the number of maximal subgroups in G(n, 4, 1) is equal to
(35" — 4(34)"+6(33)" - 4(32)"+31")/24,
since 0o(G(n, 4, 1)) is equal to 24.
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