THE NUMBER OF MAXIMAL SUBGROUPS OF THE SEMIGROUP OF BINARY RELATIONS

By Kim Ki-Hang Butler and George Markowsky

Reprinted from the

Kyungpook Mathematical Journal

Vol. 12, No. 1, June, 1972

Kyungpook Math. J. Volume 12, Number 1 June, 1972

THE NUMBER OF MAXIMAL SUBGROUPS OF THE SEMIGROUP OF BINARY RELATIONS

By Kim Ki-Hang Butler and George Markowsky

It was shown in [11] that every finite group is the maximal subgroup of a semigroup B_X of all binary relations on a finite set X. This result was extended by Plemmons and Schein [10] to the general case, using a theorem due to Zaretskii [14]. Clifford has given an entirely self-contained proof of this interesting result in [7].

The purpose of this paper is to count the number of maximal subgroups in a semi-group B_X of all binary relations on a finite set X. This work has connection with previous work [2]-[5] by the first author, as well as from recent work of the second author [8]. In order to summarize our results, we find it expedient to first restate some of the definitions and notations.

Let $X = \{x_1, x_2, \dots, x_n\}$ and assume |X| = n > 0, where |X| denotes the cardinality of a set X. A binary relation on X is a subset of $X \times X$, and the set of all binary relations on X is denoted by B_X . The product $\alpha\beta$ of two relations α and β on X is defined to be the relation

$$\alpha\beta = \{(a, b) : (a, c) \in \alpha \text{ and } (c, b) \in \beta \text{ for some } c \in X\}$$

The operation is, of course, a generalization of the rule of composition of functions. Hence B_χ is a semigroup.

By a (0, 1)-matrix of order n is meant an $n \times n$ matrix of 0's and 1's. Let B_n denote the set of all such matrices. We consider the sum and product of members of B_n to be the sum and product over the Boolean algebra $B = \{0, 1\}$ of order 2. Then B_n is a semigroup under matrix multiplication, and the mapping

$$\alpha \longrightarrow A = (a_{ij}) = \begin{cases} 1 & \text{if } (x_i, x_j) \in \alpha \\ 0 & \text{otherwise} \end{cases}$$

is an isomorphism of B_X onto B_n . Because of this correspondence, it is convenient to employ the same terminology and notation for the both the elements $\alpha \in B_X$ and the corresponding matrix $A \in B_n$. In the remainder of this paper we shall work with (0, 1)-matrices.

Let $V_n(B)$ denote the set of all *n*-tuples over *B*. The system $V_n(B)$ together with the operation of component-wise addition is called the (0, 1)-space of dimension *n*. A nonempty subset *W* of $V_n(B)$ is said to be linearly independent if the zero *n*-tuple $z=(0, 0, \cdots, 0)$ is not in *W* and no member of *W* is a sum of other members of *W*. A subspace of $V_n(B)$ is a nonempty subset closed under addition. A linearly independent subset of $V_n(B)$ that generates a subspace *W* of $V_n(B)$ under sum is called a basis of *W*. A basis always exists and is unique [2]. With $A \in B_n$ we associate the following sets: (i) the row space $R(A) = \{xA : x \in V_n(B)\}$. (ii) the column space $C(A) = \{Ax : x \in V^n(B)\}$ where $V^n(B) = \{y^t : y \in V_n(B)\}$ and y^t denotes the transpose of *y*. For $A \in B_n$ the basis of the subspace of $V_n(B)$ generated by the nonzero rows of *A* is called the row basis of *A* and its cardinality is called the row rank of *A*. The definition of column basis and column rank are defined in a similar manner. Let $\rho_r(A)$ ($\rho_c(A)$) denote the row (column) rank of *A*. We remark that $A \in B_n$ need not have $\rho_r(A) = \rho_r(A)$ [2].

In order to discuss maximal subgroups of B_{n} , we shall need the following ideas. Two elements a, b of an arbitrary semigroup S are said to be $\mathcal{L}(\mathcal{R})$ -equivalent iff they generate the same principal left (right) ideal in S. The relation $\mathcal{L} \cap \mathcal{A} = \mathcal{H}$, while the join $\mathcal{L} \vee \mathcal{A} = \mathcal{G}$. These equivalence relations are called Green's relations on S. The $\mathscr{L}(\mathscr{R}, \mathscr{H}, \mathscr{B})$ -class containing a will be denoted by $\mathscr{L}_a(\mathscr{P}_a,\mathscr{H}_a,\mathscr{P}_a)$. The Green's equivalences \mathscr{L} , \mathscr{R} , \mathscr{H} , and \mathscr{D} are discussed in [6] for an arbitrary semigroup S and in [2], [8], [10]-[12], and [14] for the semigroup B_n . An element e of an arbitrary semigroup S is called idempotent if $e^2 = e$. It is well known that if an 2-class contairs an idempotent it is a group. Any two such \mathscr{X} -classes in the same \mathscr{D} -class are isomorphic and have the same cardinal number [6]. If some $a \in S$ is regular (i.e., $a \in aSa$), then each element of \mathcal{D}_a is regular and $\boldsymbol{\mathcal{G}}_a$ contains idempotents. In this case there is associated with $\boldsymbol{\mathcal{G}}_a$ a subgroup of S, which is isomorphic to any ${\mathcal H}$ -class in ${\mathcal D}_a$ that contains an idempotent [11]. Since each %-class contains at most one idempotent [6], the enumeration of maximal subgroups of B_n is equivalent to the enumeration of the idempotents of B_n . We define $D_k^n = \{\text{regular } \mathcal{D} - \text{classes of matrices } A \in B_n \text{ with } \rho_r(A) = k = \rho_c(A) \}$. We will determine D_{k}^{n} , where $0 \le k \le 4$, and then figure out the number of idempotents in each element of D_{k}^{n} .

In order to carry out this enumeration we need the following basic results. If $A \in B_n$, then R(A) forms a lattice under set theoretic inclusion. The following

The Number of Maximal Subgroups of the Semigroup of Binary Relations basic results are due to Zaretskii [14].

THEOREM 1. Let A, $B \in B_n$, then ADB iff R(A) is lattice isomorphic to R(B).

THEOREM 2. Let $A \in B_n$, then A is regular iff R(A) is a distributive lattice.

It follows from these results and some basic results of lattice theory [1] that $|D_k^n|$ is equal to the number of nonisomorphic distributive lattices of length k. This number in turn is equal to the number of nonisomorphic partially ordered sets of k-elements [1]. Thus, $|D_k^n|$ depends only on k, and we denote $|D_k^n|$ by m_k . The fact that $|D_k^n|$ depends only on k was also proven using a slightly different approach by the first author in [4]. By D_{ki}^n , $i=1, 2, \cdots, m_k$ we mean the individual elements of D_k^n . The following theorem will be useful in enumerating the subgroups of B_n .

THEOREM 3.

k	0	1	2	3	4	5	6	7
m_k	1	1	2	5	16	63	318	2045

PROOF. The proof follows from the preceding remarks and the enumeration of partially ordered sets found in [1] and [13].

Let G(n, k, i), $i=1, 2, \dots, m_k$, denote the set of mutually isomorphic maximal subgroups of D_{ki}^n , and let $G(n, k) = \bigcup_{i=1}^{m_i} G(n, k, i)$. Thus G(n, k) is the set of all maximal subgroups of B_n contained in D_k^n . Finally let G(n) denote the set of all maximal subgroups of B_n , then

$$|G(n)| = \sum_{k=0}^{n} \left(\sum_{i=1}^{m_k} |G(n, k, i)| \right)$$

From what has been said we get the answer to our problem, by examining the unique (up to isomorphism) lattice which is associated with each regular \mathcal{D} -class D_{ki}^n obtained by considering the lattice which is obtained by considering the row space of any element of D_{ki}^n as a lattice in a natural way.

Now to find |G(n)|, we focus on computing |G(n, k, i)| for $0 \le k \le 4$ and $1 \le i \le m_k$. In the following tables, the column headed "Diagram" gives the Hasse diagram of the partially ordered set which is associated with the canonical lattice of D_{ki}^n , which depends only on k and i. Let o(G(n, k, i)) denote the order of the groups in G(n, k, i).

k	i	Diagram	G(n, k, i)	o(G(n, k, i))
0	1		1	1
1	1	0	4 ⁿ -3 ⁿ	1
	1	o o	$(9^n - 2(8^n) + 7^n)/2$	2
2	2	P	$8^{n}-2(7)^{n}+6^{n}$	1
3	1	0 0 0	$(18^n - 3(17)^n + 3(16)^n - 15^n)/6$	6
	2	9	$15^{n} - 3(14)^{n} + 3(13)^{n} - 12^{n}$	1
	3		$(15^n - 3(14)^n + 3(13)^n - 12^n)/2$	2
	4	000	$(15^n - 3(14)^n + 3(13)^n - 12^n)/2$	2
	5	000	$13^{n} - 3(12)^{n} + 3(11)^{n} - 10^{n}$	1

FROOF. Since the number of maximal subgroups of B_n is equivalent to the number of idempotents in B_n we may identify |G(n, k, i)| with $|E(D_{ki}^n)|$. This set of results is proved in [3].

Before we continue we need some additional results. The following appears in [9].

THEOREM 5. Let $A \in B_n$, then the Schutzenberger group associated with D_A is isomorphic to the group of lattice isomorphisms of R(A).

To help visualize this, we need the following result which appears in [8].

THEOREM 6. There is a natural isomorphism between the group of automorphisms of a finite distributive lattice L and the group of automorphisms of the partially ordered set formed by the join-irreducible elements of L.

The theorems above mean that for $A \in D_{ki'}^n |H_A| = o(G(n, k, i))$ depends only on k and i, and in particular on the automorphisms of the partially ordered set of k elements formed by the basis of R(A).

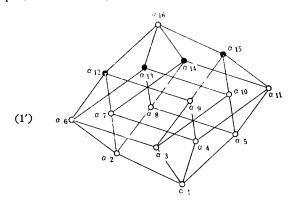
The Number of Maximal Subgroups of the Semigroup of Binary Relations

THEOREM 7. For k=4.

IUEC	DREM 1. FOT K		o(G(n, 4, i))
i	Diagram	G(n, 4, i)	
1	0000	$(35^n - 4(34)^n + 6(33)^n - 4(32)^n + 31^n)/24$	24
2	000	$(28^{n} - 4(27)^{n} + 6(26)^{n} - 4(25)^{n} + 24^{n})/2$	2
3	%	$(26^{n} - 4(25)^{n} + 6(24)^{n} - 4(23)^{n} + 22^{n})/2$	2
4	% .	$(26^{n} - 4(25)^{n} + 6(24)^{n} - 4(23)^{n} + 22^{n})/2$	2
5	j j	$(23^{n}-4(22)^{n}+6(21)^{n}-4(20)^{n}+19^{n})/2$	2
6	000	$22^{n}-4(21)^{n}+6(20)^{n}-4(19)^{n}+18^{n}$	1
7		$(28^{n}-4(27)^{n}+6(26)^{n}-4(25)^{n}+24^{n})/6$	6
8	900	$(28^{n} - 4(27)^{n} + 6(26)^{n} - 4(25)^{n} + 24^{n})/6$	6
9	13	$24^{n} - 4(23)^{n} + 6(22)^{n} - 4(21)^{n} + 20^{n}$	1
10	20	$23^{n} - 4(22)^{n} + 6(21)^{n} - 4(20)^{n} + 19^{n}$	1
11	1000	$23^{n} - 4(22)^{n} + 6(21)^{n} - 4(20)^{n} + 19^{n}$	1
12	13	$(26^n - 4(25)^n + 6(24)^n - 4(23)^n + 22^n)/4$	4
13	1000	$(22^{n}-4(21)^{n}+6(20)^{n}-4(19)^{n}+18^{n})/2$	2
14	000	$(22^{n}-4(21)^{n}+6(20)^{n}-4(19)^{n}+18^{n})/2$	2
15	1-000	$(22^{n}-4(21)^{n}+6(20)^{n}-4(19)^{n}+18^{n})/2$	2
16	6 00	$19^{n} - 4(18)^{n} + 6(17)^{n} - 4(19)^{n} + 15^{n}$	1

PROOF. Let us consider the partially ordered set represented by diagram (1) call

it α . By considering the ring of all subsets of α which are closed from below we get a distributive lattice [1]. In this case where the partially ordered set is the basis of the row space of a binary relation, the corresponding lattice, is the lattice which would be formed by the whole row space. Thus in this case we get the lattice L_1 represented by diagram (1').



As is proved in [8], the number of idempotents is equal to

$$\left(\sum_{i=0}^{k} \left(-1\right)^{i} {k \choose i} \left(\mathfrak{M}(A) - i\right)^{n} / |H_{A}| \right) \tag{*}$$

where $A \in \mathcal{D}_{ki}^n$ for some i and $\mathfrak{M}(A)$ is the idempotent number of the matrix A. Thus we are left with the task of calculating the idempotent number $\mathfrak{M}(A)$, since all the other quantities in (*) may be readily calculated. We will carry out the calculations in details for L_1 and we have stated the result of the analogous calculations for the other lattices in the table above. In [8], a procedure is given for the calculation of $\mathfrak{M}(A)$, and we will briefly explain how it works, but will not present the proof here.

We first need to identify the meet-irreducible elements of L_1 , and these are quite clearly the elements of α_{12} , α_{13} , α_{14} , and α_{15} . Let $w \in L_1$, $\theta = \{\alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}\}$. Following [8], we define $B(w) = \{x \in \theta : x \neq w\}$. Continuing we let v_w be the join of all the elements in B(w) (Note: if B(w) is the empty set, then the join is the 0 element α_1), and we let q(w) be the number of elements in L_1 which are greater than or equal to v_w . We calculate the number q(w) for each $w \in L_1$ and the number $\mathfrak{M}(A)$ is the sum of all the q(w)'s. Thus if $w = \alpha_{16}$ we get that $v_w = \alpha_{16}$ and consequently q(w) = 1. Similarly, if $w = \alpha_{15}$, we get $v_w = 16$, and q(w) = 1.

In fact, q(w)=1 for all of the elements of L_1 , except for α_1 , α_2 , α_3 , α_4 , and α_5 . For $w=\alpha_2$, α_3 , α_4 , α_5 , q(w)=2, while $q(\alpha_1)=16$. Thus in this case $\mathfrak{M}(A)=11+(4)(2)+16=35$. Hence the number of maximal subgroups in G(n, 4, 1) is equal to $(35^n-4(34)^n+6(33)^n-4(32)^n+31^n)/24$,

since o(G(n, 4, 1)) is equal to 24.

Pembroke State University Pembroke, N. C. 28372

Harvard University Cambridge, Mass. 02138

REFERENCES

- G. Birkhoff, Lattice Theory, Amer. Math. Soc., Colloquim Pub., Vol. 25, 3rd Ed., Providence, R. I., 1967.
 K.K.-H. Butler, Binary relations, Recent Trends in Graph Theory, Springer-Verlag, Berlin, Heidelberg, and New York, [Lecture Notes in Math., No. 186], 1971, 25-47.
 On (0, 1)-matrix semigroups, Semigroup Forum, 3(1971), 74-79.
- [4] _____, Canonical bijection between D-classes of (0, 1)-matrix semigroups, to appear in Periodica Mathematica.
- [5] K.K.-H. Butler, The number of partially ordered sets, to appear in J. Combinatorial Theory, Series B.
- [6] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Survey No. 7, Vol. 1, Providence, R.I., 1961.
- [7] ______, A proof of the Montague-Plemmons-Schein Theorem on maximal subgroups of the semigroup of binary relations, Semigroup Forum, 1 (1970), 272-275.
- [8] G. Markowsky, Idempotents and product representations with applications to the semigroup of Binary relations.
- [9] R. Brandon, D. Hardy, and G. Markowsky, The schutzenberger group of an X-class in the semigroup of Binary Relations.
- [10] R. J. Plemmons and B.M. Schein, *Groups of binary relations*, Semigroup Forum, 1 (1970), 267-271.
- [11] _____, and J.S. Montague, Maximal subgroups of the semigroup of relations, J. of Algebra, 13 (1969), 575-587.

- [12] S. Schwarz, On the semigroup of binary relations on finite set, Czech. Math. J., 20 (1970), 632-679.
- [13] J. A. Wright, Cycle indices of certain classes of quasiorder types or topologies, Doctoral Thesis, University of Rochester, 1972.
- [14] K. Zaretskii, The semigroup of binary relations, Mat. Sbornik, 61 (1963), 291-305 (Russian).