\rLLHfE7
The

TENTH ANNUAL ACM SYMPOSIUM

THEORY OF COMPUTING

Papers Presented at the Symposium
San Diego, California

May 1 - 3, 1978

Sponsered by the
ASSOCIATION FOR COMPUTING MACHINERY

SPECIAL INTEREST GROUP ON AUTOMATA AND COMPUTABILITY THEORY

With the Cooperation of

The IEEE Computer Society Technical Committee on

Mathematical Foundations of Computing, and

The University of California, San Diego

Copyright @ 1978 by The Association for Computing Machinery
1133 Avenue of the Americas, New York, N.Y. 10036

EXACT AND APPROXIMATE MEMBERSHIP TESTERS

Larry Carter
Robert Floyd
John Gill
George Markowsky
Mark Wegman

1. Introduction

In this paper we consider the question
of how much space is needed to represent a
set. Given a finite universe U and some
subset v (called the vocabulary), an
exact membership tester is a procedure that
for each element s in U determines if
s is in V. An approximate membership
tester is allowed to make mistakes: we
require that the membership tester
correctly accepts every element of v,
but we allow it to also accept a small
fraction of the elements of U - v

Membership testers are useful 1in sev-
eral areas. An obvious application is
spelling checking in document preparation,
where many typographical errors can be
recognized as not in a standard English
vocabulary. Another use is in automated
ciphertext-only cryptanalysis; a proposed
decipherment can be discarded unless a sig-
nificant fraction of the words in the deci-
pherment are valid. In optical character
recognition systems, uncertainties could be
resolved in favor of words or letter
sequences stored in a vocabulary of common
words [RH]. Yet another application is the
storing of the set of valid user IDs and
passwords, or credit card numbers, or
account numbers.

The first, fourth, and fifth authors
are in the Automatic Programming Group
at the IBM Watson Research Center,

Yorktown Heights, NY 10598. The second
and third authors are in the Computer
Science and Electrical Engineering
Departments, respectively, of Stanford
University, Stanford, CA 94305. This
research was supported in part by Na-
tional Science Found at ion Grants
MCS72-03663-A0U and MCST7-07555 and by
Joint Services Electronics Program Con-
tract NOOO14-75-C-0601.

In this paper, 1lower bounds on the
size of membership testers are given and
algorithms are presented that nearly
achieve the lower bounds. Some of these
algorithms perform better than the two
methods proposed by Bloom [B1] and analyzed
here. If we allow an approximate member-
ship tester to incorrectly accept a frac-

tion 277 of the
approximately vr

words of v, then
bits are needed for a
vocabulary of v words. Although we are
primarily concerned with the program's
size, we are secondarily concerned with the
time required to test membership. For both
exact and approximate membership testers,
we present theoretical procedures which
nearly achieve the lower bounds and some
more practical procedures which require a
1ittle extra space. For instance, one of
the practical approximate membership tes-
ters can be implemented wusing at most
vir+2) bits.

2. Lower bounds on the size of membership
testers '

We are motivated by applications in
which V can be considered to be randomly
chosen from U , with each subset of size
v being equally likely. Thus, the ques-
tion we ask is, "Given a set U and an
integer v , what is the space required to
represent any vocabulary of size v chosen
from gy 2" If we wish to store a
vocabulary that has a fair amount of struc-
ture, then there may be ways to further
reduce the space requirements by taking
advantage of the structure. For instance,
to represent an English dictionary, we
might use a Huffman (optimum variable-
length) code {Hul,(Ga, pp. 52-55] to remove
some of the redundancy of the English

words, then partitition the set of encoded
words according to lengths of the encod-

ings, and finally for each length use a
representation proposed in this paper to
store the sets of encodings of each length.

A standard counting argument from pro-
gram size complexity [Kol,[Ch1] gives the
minimal memory requirements for exact
membership testers.

In this paper lg denotes logarithms
base 2.

Proposition 1: In a universe of size
u |, at most a fraction 27K of the
vocabularies of size v can be accepted by
exact membership testers of size less than

1g (3) - kK bits.

Proof: There are (3) vocabularies

of v words, but only

1g(Y) -«
2 v -1 < 2‘k(3) (1)

programs of size less than lg (3) - k
bits.

Not Ssurprisingly, as the universe size
u grows, that is, as the maximum possible
length of a vocabulary word grows, the
memory required to represent the vocabulary
increases. (The lower bound of this propo-
sition can be increased if we assume that
programs are self-delimiting [Ch2].)

We now study the storage needed to
approximate vocabularies to within a speci-
fied error probability. There are two ways
in which approximate membership testers can
make mistakes: valid words can be unrecog-
nized as belonging to the vocabulary (false
alarms) or incorrect words can escape
detection (undetected errors). It is easy
to see that 1little memory can be saved by
permitting false alarms; a membership tes-
ter with a small false alarm probability is
in fact a checker for a slightly smaller
vocabulary. On the other hand, if we do
not insist that all incorrect words be
detected, but require an undetected error

probability 1less than 2=r, then a
vocabulary can be represented in an amount
of storage that depends only on v and r;
this storage is independent of the universe
size u and for reasonable values of r
is less than the program size complexity of
V.

-~ 60 -

The next proposition gives a 1lower
bound on the storage in terms of the number
of vocabulary words and the undetected
error probability. We assume that 311
incorrect words are equally 1likely. (We
ignore for example the "local" nature of
typographical errors and the consistent
misspellings of certain words. These prac-
tical problems could be attacked in a spel-
ling checking application by using a table
of frequent misspellings.)

Proposition 2: In a universe of size
u>>v, at most a fraction 27K ¢ the
vocabularies of size \' can be checked

with undetected error probability 27T by
programs of size less than vr - k bits.

Proof: Every approximate membership
tester can be described by the subset W
of U that it actually accepts. If the

false alarm rate is 0 and the undetected

error probability is 27", then W is a

superset of V that contains no more than
v+ (u-v)2"" elements. There are (3) dif-

ferent vocabularies of size v , and each

set W of v+(u-v)27" words can corre-
spond to approximate membership testers for
v+(u-v)2'r)
v
Therefore, for every v and every r' < r,

if 'u is sufficiently large, then at least

no more than (vocabularies,

-r
(5)//(v+(u:y)2) > ovr! 2)
different programs .are needed to 1include
all vocabularies of size v . The proof of
the proposition is concluded by the same
counting arguments as in the proof of Pro-
position 1: to achieve an undetected error
probability of 27", for large u , at
least vr - k bits are needed to represent
all but 27K
words.

of the dictionaries of v

3. Exact membership testers

In this section, we present several
methods for creating exact membership tes-
ters. We assume that, compared to the
Space required to store the representation
of the set, the space required for the exe-
cutable code of the membership tester is
negligible. We also ignore any temporary
work area that the procedure may require.
Granting this, the first exact membership

Wt e s

tester achieves the lower bound of

g (3)1 bits, but it is not practical.

Exact Membership Tester 1: Assume
some method of enumerating without repeti-
tion all subsets of U of size v
Represent a vocabulary V by the number of
subsets that come before v in this
enumeration.

_The second method 1is more practical
and requires only slightly more space.

Exact Membership Tester 2: Assume
that the elements of U are the binary
numbers between O and u-1 . Let V =
{w1,w2,...,wv} where w, < Wy <ol
Let k = Tlg % a
X{il and Y[i]
tient and the

divided by 2% .

For each i < v, 1let

be respectively the quo-
remainder of Wy when
In other words, Y[i] is

the low-order Kk bits and X[i] is the
high-order bits of w, . If b = (u/2k;
then X[i] is in {0,1,...,b=1} . We

represent the set v by the array Y
together with the bit string Z of v+b
bits that has 1's in positions 1+4X[1] ,
2+4X[2]) ,..., v+X[v] and O0's elsewhere.

Since the elements of X are in
increasing order, the 1 we put in the
(i+X[i)l)-th position is indeed the i-th 1
of z . Thus the array X can be
recovered from the array Z ; in fact,
X[i] is the number of O0's preceding the
i=th 1 in 2z .

we can determine if
as follows:

Given s in U ,
s belongs to V

(i) Write s as s12k + s, , where
k
S5 <2" .
(ii) Determine j , the number of
1's Dbefore the s1-th zero in z, and

i, the number of 1's between the s1-th
and the (s1+1)-th zero in 7 .

(iii) If k=0, then s 1is not in
V. Otherwise, s belongs to V iff S,

is in {Y[J+11,Y[j+21,...,Y[j+1i]} .

Storing v using this

method requires v+b bits for Z and kv

bits for Y . If we assume that u and v

are powers of 2, then k = 1g % and b =
-1g 4

2 VJ = v .

Analysis:

Thus this representation

- 61 -

requires v(1lg % 4+ 2) bits. If u>> v
then 1g (3) » the lower bound of Proposi-~
tion 1, is

vilg 2 + 1g e) y, and 1lg e = 1,44,
v

closely approximated by

Step (ii) requires examining a 1large
portion of the long bit string 2 If we
apply our membership tester to a sorted
list of test words, then this may not

matter. Otherwise, we can speed up the
process by precomputing and storing the
number j of step (ii) for selected values
of s,

Exact Membership Tester 3: Let t be
an integer with 1 <t <v. The smaller
t is, the faster the membership tester
will operate and the more space will be
required. The representation of V con-
sists of the array Y and the bit string
Z of Membership Tester 2, along with the
array W where W[i] 1is the number of
1's before the (iXt)-th zero of Z .

Step (ii) can now be replaced by the
following faster sequence of steps:

(iia) Divide s; by t to obtain gq
and r such that Sy = qt+r and r < t .
We know that in the initial W[ql + qt
bits of Z , there are exactly qt zeroes
and Wlql 1's.

(iib) In the substring of Z start-
ing at the (W[gql+qt+1)-th bit, count how

many 1's there are before the r-th zero.
Add this number to W[q] to obtain j .
As before, let k be the number of 1's
between the r-th and the (r+1)-th zero.

Analysis: Assuming that u and v
are powers of 2, Exact Membership Tester 3
requires

v(2+1g—\“;‘)+%lg2v = v(2+1g%+1—+it5—-1)(3)

bits of storage. The time required to
determine if s is a member of V 1is, for
the "average" s , a constant plus the

time required to count the number of 1's
in a string of t bits. The choice of the
parameter t should be motivated by the
particular application, but it may help to
notice that by halving t , -the number of
extra bits is doubled and the speed is
roughly cut in half.

We conclude this
observations.

section with two

First, another operation that one
might wish to perform on a set is to output
the i-th largest member. The representa-
tion of Exact Membership Tester 3 can be
used for that operation, but it turns out
to be a little faster if the number of O's
before the (iXt)-th 1 is stored instead
of (or in addition to) the number of 1's
before the (iXt)-th 0.

Second, we note that there is an even
more compact (and more complicated) practi-
cal exact membership tester. Briefly, some
additional space can be saved by choosing

the parameter k of Exact Membership Tes-
ter 2 to be smaller than lg g » and using
a Huffman code to reduce the length of the
bit string Z which now contains more O's

than 1's . For instance, if we choose k

to be lg % -1 and encode groups of 3
bits, then we reduce the v(lg ¥+ 2) bits
required by Exact Membership Tester 2 to

v(lg 3 + 1.81) bits.

4. Approximate membership testers

In this section we present several
methods for creating approximate membership
testers for a vocabulary V . Each tester
has an associated preprocessor that digests
V and produces a compressed representation
of a superset W of V. The input to the
tester is the compressed vocabulary and a
possible word 8 ; the membership tester
estimates whether s is in V by actually
computing if s is in W. Under the
assumption that all errors are equally
likely, the undetected error probability is
(w=v)/(u-v), where w 1is the size of W.

In each procedure we seek to achieve

an undetectéd error probability of 2°7 .
Thus the design parameters are v y the
number of vocabulary words and r , the
reliability exponent. The universe size u
does not appear explicitly in the descrip-
tion of these procedures, but does affect
the choice of the necessary hash functions.

The first two approximate membership
testers are éssentially the same as hashing
schemes proposed in [B1]. We have analyzed
these methods in order to allow them to be

- 62 -

compared against the third tester. In each
case, we have adjusted the parameters of
these methods to achieve an undetected

error probability of 277 .

Preprocessor 1: Let

r "independent"™ hash functions such that
hj U > {1,2,...,(1g e)vr}. Prepare a
hash table of (1lg e)vr bits as follows.
Initialize the table to zeroes. Enter each
vocabulary word A into the table by set-

ting the ©bits in the r
{hj(vi): j=1,2,...,r} .
bits in the table may be set on account of
more than one vocabulary word.)

h1,h2,...,hr be

locations
(Note that certain

Approximate Membership Tester 1:
Given a test word s y test the bits Zn
the dictionary hash table at 1locations
h1(s),h2(s),...,hr(s) . An error is de-
tected iff any one of these bits is not
set.

Analysis: At most vr bits of the
hash table are set by the preprocessor, but
in fact because of duplications the
expected number of bits set can be calcu-

lated to be %(lg e)vr . (This holds under

the generous assumption that the r hash
functions operating on the v vocabulary
words produce independent addresses.)
Thus, on the average, only half of the bits
in the table are set, and so the undetected
error probability, that is, the probability
that for a randomly chosen word s al}
bits in 1locations h1(s),h2(s),...,hr(s)
are set, is at most about 277 .

This tester requires r probes into
the table to verify correct words, but only
an average of about 2 probes to detect
incorrect words. This method can be modi-
fied, at only a slight increase in the
undetected error probability, so that for
each word s, the hash values {hj(s)}

are 1n the same region in memory, thereby
allowing for efficient implementation of
this method in paged memories.

The basic idea of the second approxi-
mate membership tester is to store a hash
function of each vocabulary word in a hash
table. If the length of the stored hash
value and the size of the table are care-
fully chosen, then a reasonably efficient
and compact representation of the. vocabu-

lary is obtained. To simplify the descrip-

tion, we suppose that r is a power of 2.

Preprocessor 2: Prepare a hash table

of av entries, where
a=1+—1" (1)
- r+ l1gr
and each table entry is r + 1lg r bits in

size. The total storage of the table is
vir + 1g r + 1) bits. Let h be an
(r + 1g r)-bit hash function that excludes
the value 0, and 1let h1,h2,h3,... be an

"independent"™ sequence of hash functions
mapping U into {1,2,...,av}l. The hash
table is initially empty, that is, all
entries are zero. Enter the value h(vi)

into the hash table for each vocabulary
word vi v 2 free location in the table is

found by checking locations
h1(vi),h2(vi),h3(vi),... until an index j
is found for which the entry in location
hj(vi) is 0.

Approximate Membership Tester 2:
Given a test word s , compute h(s) and
compare with the entries in 1locations
h1(s),h2(s),h3(s),... until j is found

such that the entry in hj(s)

equals 0 or h(s) . In the former case an
error has been detected, while in the
latter case s is assumed to be a valid
word. (If desired, j can be constrained
to be no more than the largest number of
hashes needed to enter any word in the
vocabulary preprocessing; with high proba-
bility j < r 1lnr.)

location

Analysis: We argue informally; the
inequalities can be justified with a little
calculation. The average number of probes
into the table for a random word s before
finding a vacant location is r + 1lg r + 1.
Therefore the undetected error probability
is no more than about

r+1gr+1 _r«+lgr+ 1 _ >-T (5)
orelg r - r2l - :

On the average, about r probes are

required to detect errors, but only
0(ln r) probes are required for correct
words. (This holds under the pessimistic

assumption that all correct words are
equally likely; hashing the most frequently
occurring vocabulary words first when

- 63 -

preparing the compressed dictionary will
result in a smaller number of probes for
correct words.)

The second tester uses less storage
for large r than the previous method, but
for interesting values of r, say 10, the
two methods are comparable. One applica-
tion of this second method might be in com-
piling programs with very long identifiers.
By storing the first few symbols of the
identifier together with a hash function of
the entire identifier, the compiler can
distinguish with high probability 1long
identifiers that agree in most positions.

The third tester is similar to the
second in that the vocabulary is repre-
sented by a set of values of the words pro-
duced by a hash function h . However,
instead of storing approximately r-bit
values in a hash table, we enter r + lg v
bits into a linear array; the tester com-
pares a test word's hash value against
every value in this table.

The intuition behind this method is
that we hash our vocabulary into v’
bins. Then the probability that an invalid
word will collide with a vocabulary word is
no more than 277 . To simplify the
description below, we assume that the vo-
cabulary size v is a power of 2.

H be a univer-

Preprocessor 3: Let

sal2 class of hash functions from U to N

H {0,1,...,v2r-1} . Choose h at random
from H . Let V = {w1,w2,...,wv} and let
M be the set {h(wi): i=1,2,...v} .,

Create an exact membership tester for M
using the second or third method of the

previous section. = Since M} < v (we
assume for simplicity that v is a power
of 2), this requires at most
1 ()
' M) rlg-f%l'-+\2'{iv(r+2) (6)

bits when using Exact Membership Tester 2.

Faster execution can be achieved at the
expense of using more space by Exact
Membership Tester 3.

Approximate Membership Tester 3:
Given a test word s , accept s iff

h(s) belongs to M .

If the hash function h

Analysis:

produces values distributed uniformly over
N , then the fraction of words in U that
hash to values in {h(wi): i=1,...,vl is
at most [Vi{/IN| . Since h was chosen
randomly from a universal2 class of hash
functions [CW], we can invoke Proposition 2
of [CW] to conclude that if s is not in

V then the probability that h(s) belongs
to M 1is at most

Vi _ v _ ,-r

™wT = T = 2., (7)

The average performance {(in the sense of
[Gi]l or [Ral) of this tester is independent
of the particular vocabulary V . For all
vocabularies of a given size, Approximate
Membership Tester 3 requires the same
amount of space. We can almost claim that
the error probability and the time to check
an element are also vocabulary-independent.
This claim rests on the fact that the esti-
mates of speed and accuracy apply to any
one vocabulary if we average over the
choice of hash functions.

A significant advantage of the third
tester is that it does not assume the
existence of an independent sequence of
hash functions, but requires only a func-
tion that hashes U nearly uniformly onto
N . The third tester also compares quite
favorably to the first two in execution
time. To make the comparison, we assume
that the time required to count the number
of 1's in a byte is roughly equal to the
time required to hash a byte. Then the
parameter t of Exact Membership Tester 3
should be chosen so that Approximate
Membership Tester 3 takes about the same
amount of time as the membership tester
being compared against. It turns out that
for r > 2, Approximate Membership Tester
3 requires 1less space than Approximate
Membership Tester 1. Neither the second
nor the third membership tester is clearly
superior for r £3., but for all r > 3 ,
the third tester uses less space than the
second.

Finally, we present a
(but absurdly impractical)
membership tester.

Preprocessor 4: For m = 1,2,3,...,

generate in some fixed order all collec-
tions ¢ = {u1,w2,...,wm} where each LA

is a subset of U

space-optimal
approximate

of size (u2”"} . For

- 64 -

each C , the preprocessor tests if every
v-element subset of U is contained in
some Hi . This phase of the preprocessor

is finished when the first satisfactory ¢
is found. Now the encoding used for the
vocabulary V is simply the smallest i
such that wi contains V .

Approximate Membership Tester 4: The
membership tester duplicates all the work
involved in constructing the first satis-
factory C . Then it checks if the test
word s belongs to wi

5. Some related combinatorial results

Erdés and Spencer [ES] define
M(u,k,v) to be the smallest number of k-
element subsets of a universe U of u
elements such that every v-element subset
of U 1is contained in one of the k-element
subsets. The problem we have been consid-
ering is for each v-element subset of U,
to find an approximate membership tester

that accepts some superset W of v,

where W= w27l Thus the number of

bits needed to specify an approximate
membership tester for any v-element vocab-

ulary bounds above 1g M(u,u2™",v) . By
using Approximate Membership Tester 3 with

Exact Membership Tester 1, we derive
r

1g M(u,u2”",v) < 1g (vs)y . In other

words,

1g M(u,k,v) < 1g (VVK) =y g Y (g)

where e
rithm.

is the base of the natural loga-~

On the other hand, the upper bound
that ErdS8s and Spencer derive (using a pro-
babilistic and nonconstructive argument) is

MCuk,v) < (s I (D /L ()

From this it follows that

1g M(u,k,v) < v 1g % + 1g 1n (5); (10)

Which of these two upper bounds on
l1g M(u,k,v) is better depends on the par-
ticular values of u » VvV, and r , but
in either case we learn something.

When 1.44v < 1g 1n (5) s then. we

have an improved upper bound on
1g M(u,k,v), v 1lg %g . This

result is not of tremendous combinatorial
interest, since k mwust be on the order of

namely

22v for the new bound to be smaller than
that given by Erdds and Spencer, but it
does give a Dbetter asymptotic result.
Specifically, if we hold v constant and

jet u and k go to infinity in a fixed
ratio, then remains constant
while the Erd&s-Spencer bound slowly grows

to infinity.

v 1g %;

Otherwise, when 1.44v > 1g 1n (5) ,

we know that Approximate Membership Tester
3 is not optimal. For example, suppose
that U is the set of strings over the
Roman alphabet of length 100 (so that u =
26190y and that v = 100,000 and r = 10.
Then it turns out that Approximate Member-
ship Tester 3 requires 1,200,000 bits, but
Approximate Membership Tester 4 needs some-
where between 1,000,000 and 1,000,025 bits.

Acknowledgments

This research was supported in part by
National Science Foundation Grants MCS72-
03663-A04 and MCST77-07555 and by Joint Ser-
vices Electronics Program Contract NOOO14 -
75-C-0601.

References

[B1] B.H. Bloom, "Space/Time Trade-offs in
Hash Coding with Allowable Errors,"
Comm. ACM 13 (1970), pp. 422-426.

{CW] J.L. Carter & M.N. Wegman, "Universal
Classes of Hash Functions," Proceed-
ings of the Ninth Annual ACM Sympo-
sium on Theory of Computing, May,
1977, pp. 106-112.

{Ch1] G.J. Chaitin, "On the Length of Pro-
grams for Computing Finite Binary
Sequences," Journal Assoc. Comput.
Mach. 13 (1966), pp. 547-569.

[Ch2] G.J. Chaitin, "A Theory of Program
Size Formally Identical to Informa-
tion Theory," Journal Assoc. Comput.
Mach. 22 (1975), pp. 329-340.

- 65 -

[ES]

[Gal

{Gi]

[Hu]l

[Ko]

[Ra]

[RH]

P. Erdss and J. Spencer, Probabilis-
tic Methods in Combinatorics, Chapter
13, Academic Press, New York, 1974,

R.G. Gallager, Information Theory and
Reliable Communication, Wiley, New
York, 1968.

J. Gill, "Computational Complexity of
Probabilistic Turing Machines," SIAM
Journal on Computing 6 (1977), pp-.
675-695.

D.A. Huffman, "A Method for the Con-
struction of Minimum Redundancy
Codes," Proc. IRE 40 (1952), pp.
1098-1101.

A.N. Kolmogorov, "Three Approaches to
the Definition of the Concept 'Quan-
tity of Information'," Probl. Pedera-
chi Inform. 1 (1965), pp. 3-11.

M.O. Rabin, "Probabilistic Algo-
rithms," Algorithms and Complexity:
New Directions and Recent Results,
J.F. Traub, ed., Academic Press, New
York, 1976, pp. 21-U0.

W.S. Rosenbaum and J.J. Hilliard,
nMultifont OCR Postprocessing Sys-
tem," IBM Journal of Research and
Development 19 (1975), pp. 398-421.

g s -t

P

o —pr

e

