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ABSTRACT

In this paper. several relations between members of a chain-complete poset (weaker than the relations
relatively compact and IN introduced by Scott in his study of bases) are considered, with an eye toward
examining whether all the properties of bases can be obtained from weaker axioms. 1t turns out that for all
but one relation (relatively chain compact) one gets a weaker notion of bases than using relatively compact or
IN. For relatively chain compact we conjecture that one gets a weaker notion of basis. However, we show
that in the presence of bounded joins the existence of a basis derived from the relation of relatively chain
compact implies the existence of a Scout basis if the cardinality of the chain-complete poset is less than the
w-th infinite cardinal. If one accepts the Continuum Hypothesis this means that the weaker relation s
adequate in many posets likely to be of interest to computer science. Finally, even in the presence of the

"weaker" type of basis in a complete lattice, the meet operation is continuous.
§ O Introduction

Following Dana Scott’s lead {S1]. a number of authors ([A].[ECI.[MZ],[MR],[RI],[R3].[SM].[V]) have

examined the notion of basis for various classes of posets.
Definition 1 Let P be a poset and x.veP.

(i) x is suid to be relatively compact to y, xRCy, if for every nonempty directed set DSP with sup D>y,

there exists de D with d>x.

(ii) A nonempty directed set DcP consisting of elements relatively compact to x is a local basis for x if sup

D=x.

(iii) P has a basis if every element of P has a local basis. A subset B is a basis of P whenever for every

xeP some subset of B is a local basis for x and if every element of B is in some local basis which we denote
*

by B,.
(iv) We use D'\ to denote the set {xeP|xRCy}.
(v) 1 xRCx, then we say x is compact.

Definition 2 Let P be a poset and x.yeP.

(i) x is said 10 be relatively chain~compact (relatively chain-irreducible. relatively directed irreducible), xRCCy
(xRCly, if for every nonempty chain (chain, directed set) in P with sup D>y (sup D=y, sup D=y), there exists

deD with d>x.

(ii) A nonempty directed set DSP consisting of elements relatively chain-compact (relatively chain-
irreducible, relatively directed irreducible) to x is a focal CC-basis (local Cl-basis, local DI-basis) for x if sup

D=x.

(iii) P is said to have a CC-basis (Cl-basis. DI-basis) if every element of P has a local CC-basis (Cl-basis,
Dl-basis). A subset B is a CC-basis o7 P (Cl-basis of P, DI-busis of P) whenever for cvery x€ P some subset of
B is a local CC-(CI-,DI-) basis for x and if every element of B is in some local CC-basis (Cl-basis, Di-basis)

which we denote by B,.
(iv) We use CCDy (CID)_, DlDy) to denote {xe P xRCCy} ({xeP | xRCly}, {xeP | xRDIy})
(v) If xRCCx (xRClx.xRDIx) we say X is chain-compact (chain-irreducible. directed-irreducible). (J

In {MR; Lemma 2.6} it is shown that in a chain-complete poset xRCCx iff xRCx. In [M2] it is shown
that x has a local basis iff D, is a local basis. Similarly, x has a local DI-basis iff DID, is a local DI-basis.

This result is not true for local CC-bases and local Cl-bases.

Theorem 3 Let P be a poset, x,ye P. then: xRCy implies xRCCy, xRDly and xRCly: xRCCy implies RCly;
xRDly implies xRCly. Furthermore, if P has a basis, then it has a CC-basis,Cl-basis and DlI-basis. Similarly,
if P has a CC-basis it has a Cl-basis and a Di-basis is also a Ci-basis. a

Example 4 shows that RC, RCC=RCI, RDI and Example S shows that RCIzRDI. Furthermore, none of
these concepts are equivalent 1o the topological concept IN used by Scott ([S1}.[S2]). However. it turns out
(IM2], [S2]) that the notion of basis using the concept of IN is equivalent to the one using RC. i.e., the fact
that each point y of a poset can be written as a sup of a directed set of elements "nicely” related to y
strengthens the relationship. A similar situation occurred in [MR] where a basis defined using the weaker
notion of chain-irreducible turned out to be equivalent to a basis defined using the notion of compactness.
Thus it is of interest to determine the extent to which having a basis of a certain type actually gives one of a

stronger type.

It will be shown that the sct {basis. CC-basis, Di-basis, Cl-basis} includes at least three distinct concepts.
The only ambiguity is over the equivalence of basis and CC-basis. We conjecture that basis # CC-basis, but
do not have a counterexample in hand. A counterexample might be fairly difficult. since Theorem 12 shows
that basis = CC-basis if P has bounded joins and |P] < (where w; denotes the i-th infinite cardinal
number). Furthermore, given any nonempty directed set D and a point y and y<sup D the set of elements of
CCD), lying below some element of D is extensive enough to have y as its sup (Theorem 11). This coupled
with the fact (Theorem 8) that meet is continuous in a complete lattice with a CC-basis might make a

CC-basis enough of an assumption even if basis # CC-basis.

¥ 1 Dl-basis ¢ CC-basis, basis # Cl-basis
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Example 4 Let N* be the natural numbers together with « ordered in the obvious manner. Let P={0,1}xN=

be ordered by

(am)<(bm') iff (i) a=b and m<m"' in N=
or
(i) (a.m)=(0,0)
or

(iii) (b.m')=(1,x)

Thus P looks like

(1,0)

(1,2)
. (,n
(0,2) (1,0)
(0,1)
(0,0)

(0, ®)

Figure |

Note that P is chain-complete, but lacks a CC-basis because yRCC(0,x) implies that y=(0,0). To see this,
note that C*={(1.m) | meN~—={ux}} is a chain with sup C*=(1,x)>(0,). but the only element less than

(0,0) and less than some element of C* is (0.0). Since sup {(0.0)$=(0.0)#(0.=), P lacks a CC-basis
That P has a Di-basis follows from the following observations.
(1) Every element of B=P—{(0,x). {l,x)}is di’rected-irreducible.
(2) In B, every directed set is a chain.
(3) ForyeB, DID,={x<y}, DID ., ={(0.m) | meN} and DID(, ., = {(1.m) ImeN}u{(0.0)}. O

Note that P is a lattice so that even for complete lattices, DI-basis # CC-basis. From Theorem 3, it follows

that basis, CC-basis # DI-basis, Cl-basis.

§ 2 Cl-basis # DI-basis
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Example 5 Let w be the first infinite ordinal and wy the first uncountable ordinal. As usual, we consider an

ordinal to be the set of all its predecessors. Thus w+! = wu{w} and witi=w uiel.
LetP = ((ul+l)x(w+l)x{0,1})—{(«:,_«:,0)}. be ordered as follows:
(2.b.m)<(a'.b'.m"} iff (i) m=m", a<a' and b<b'

or
(i) m=0, m'=1, a'=«w; and bgb!

or

(iii) m=0, m'=1, a<a' and b'=o

or

(iv) (a.b,m)=(0,0,0), where the orderings on the components are

the ordinal ordering.

One can verify directly that P is a complete lattice. Let D=w,;xwx {0} and D'=w,x« x{1}. Both D and
D, are directed subsets of P and have (wy.@,1) as their sup. Thus if yRDI{w .«w.1). then y<x,x' for some

xeD. x'eD. Hence y=(0,0.0}. It follows that DID(”MI‘” = {(0.0,0)} and that P lacks a Di-basis.
The fact that P has a Cl-basis follows from the following observations

(1) Any chain C<P with sup C = (wl.u.l) must contain (w,.w.l1) or a cofinal subset of one of the
following four chains: {w;}xwx{0}; fordxex{l} o xfo}x{0}; w;xfwix{l}. To see this note that any
chain in P with sup = (wy.w.1). not containing (w),w,1), and not cofinal in any of the four chains mentioned
above is contained entirely in D or D'. There are two cases to consider. If the chain is countable then the
first components form a countable subsequences of oy and cannot possibly have «; as a limit. If the chain is
uncountable, there exist ne« such that an uncountable number of elements have their second component = n.
But this implies that some element of the chain has its first component = «,;, contradicting the assumption

that the chain was entirely contained in D or D'.

{2) CID, , ,,=D.

(ol

(3) For y=(a,b,0), ClDy-—.{(c,d,O) fc<*a,d<*b} where for two ordinals a.f8 a<*B mean- either that Bisa

limit ordinal and a<8 or that 8 is not a limit ordinal and a <8.

(4) For y=(a,b,1) with (a.b)#(w,,0). CID, = {(c.d,1) | c<*a. d<*b} u {(0.0.0)}. since no chain in D
can have y a a sup and thus no element of D' needs to be < any element of D. On the other hand, there is

always a chain in D' having y as a sup which shows that nonzero elements from D cannot be RCly. O
Thus even for complete lattices Cl-basis # DI-basis.
§ 3 1s Basis # CC-basis?

In section 4 of [S1}], Scott notes that the existence of a basis in a complete lattice impies that the meet

operation is continuous, i.¢., it distributes over taking sups of directed sets. In this section, we shall show that
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the meet is continuous whenever the lattice has a CC-basis. Furthermore, the existence of CC-basis is
cquivalent to the meet being continuous znd the existence of a Cl-basis. Similarly, the existence of a basis is
cquivalent to the continuity of the meet and the existence of Dli-basis. The final results in this section
iNustrate some of the problems in constructing a counterexample to basis # CC-basis. For instance, if P is a
poset with a CC-basis, B, yeP and D*<P is a nonempty directed set with y<sup D* then there are always

cnough elements RCCy such that their sup is y.
The proofs of the following two iemmas can be found in [M1: Theorem 1 and Corollary 3]

Lemma 6 (Sharpened Iwamura’s Lemma) If D is an infinite directed set, then there exists a transfinite

sequence DL a< | DY, of directed subsets of D having the following properties:
(1) for cach a, il a is finite, so is D . while if a is infinite | D |=1]al (thus foraila. 1D 1 <ID[);
(2) il a<B<D].D,EDy:
(3) D=v, D, O

Lemma 7 If P is a chain-complete poset and f: P—+P preserves sup’s of nonempty chains. it preserves

~up’s of nonempty directed sets.
Theorem 8 Let P be a complete lattice with a CC-basis, then the meet operation is continuous

Proof: By Lemma 7 it is enough to show that for any xeP and nonempty chain {y {cP with

v=suply, }.xay=supi{xay }. Clearly, x~y>sup{xay.}. Let 2zeCCD,A,. then for some y,, z<y, whence

¥
/<xAy,. Since xAy=sup CCD, . <sup ixay,}, we are done. [

Corollary 9 Let P be a complete lattice. Then the following equivalent.
(1) P has a CC-basis.
(2) P has a Cl-basis and the mect operation is continuous.

Proof: Theorem 8 shows that (1) implies (2). We claim that (2) implies that RCC=RCI. whence (1)
I-Hows. lLet C be a nonempty chain in P and x.veP such that xRCly and y<sup C. By continuity of 4,

v =supiyat|teC} whence for some te C. t2ya12x, e, xRCCy. O
”,

The proofl of the following corollary is easier than that of Corollary 9. since we do nol need to use

Femma 7.
Corollary 10 Let P be a complete latuce. Then the following are equivalent.
(1) P has a basis.

(2) P has a DI-basis and meel is continuous. {J
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The above results show that as far as having lattice operations be continuous, a CC-basis is as good as a

basis. It remains (o investigate the relationship between the concepts of CC-basis and basis.
Theorem 11 Let P be a chain-complete poset with a CC-basis P.

(a) If yeP and D<SP is a nonempty directed set with y<sup D, then if CCDy.D=[xRCCy1 x<d for some

de DY, CCD, y#0 and y=sup CCD, .
(b) If P has bounded joins, then CCD, is a local CC-basis and CCDy y 15 a directed set

Proof: a) The proof is by induction on | D|. Assume D is countable, then it contains a cofinal chain and
CCD, ,=CCD,  Assume the theorem holds for all noncmpty directed sets D with [ D] <A Let D' be
directed set with {D* [ =A. By Lemma 6 there exists a transfinite nested sequence of directed sets D, |

with [D, [ <X and D'=uD,

Let z,=sup D, Tor a<A. {z,},., is a chain with supiz, i, \=supD2y. For each xe (‘CD). there exis:s

a, with x<z By induction, CCD #@ and has x as its sup. However, CCD_2UCCD,
* S *D, YORCG T

(b) If x;,RCCy and x,RCCy, x{Vx, exists and is RCCy. Thus CCD_\‘ is a directed set.  Similarly. f
X, X2 CCD 4y, x, VX2 CCD, |y since D is directed. O

Qur final result shows that for a poset with a CC-basis and a "small enough" cardinality. i.c., <w_. there
are enough relatively compact elements to enable one to reconstruct each element of the poset by taking sup~
If P has bounded joins, CC-basis is = basis. This helps to indicate some of the complexity necessary to take

intlo account in trying to construct a counterexample.

Theorem 12 Let P be a chain-complete poset with a CC-basis. B. and | P | <w . then for all yeP y=sun

D,. If P has bounded joins, D, is directed and P has a basis.

Proof: tor veP. define B_',_0=By and B, ;, =1{z¢ BUIX(B'\I for i=1,2,... . [t is easy 1o see that sup

=y for all1¢N.

We claim that | P| =« implies B, ;€D,. Actually, a somewhat stronger result holds., namciy. it [ D=,
is a directed subset of P with sup D2y, then for ali xe By_j‘ there exists de D with x<d. For countable D th.
result is obvious since D has a cofinal chain. For larger D, the result follows from Lemma 6 in the usu.i

fashion. O
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