THE SCHÜTZENBERGER GROUP OF AN H-CLASS IN THE SEMIGROUP OF BINARY RELATIONS

R. L. Brandon, D. W. Hardy and G. Markowsky Communicated by A. H. Clifford

K. A. Zaretskii has associated a lattice $V(\alpha)$ with each binary relation α , and he has shown that H_{α} is isomorphic with the group of all automorphisms of $V(\alpha)$ if H_{α} is a group. This result is extended in this paper by showing that for any binary relation α , the Schützenberger group $\Gamma(H_{\alpha})$ is isomorphic with the group of all automorphisms of $V(\alpha)$.

element of the semigroup $\boldsymbol{8}_{\mathrm{X}}$ of binary relations on the set Schützenberger group. Thus, the cardinality of an H-class \boldsymbol{H}_{α} is equal to the cardinality of each of the three groups It is well known that a group can be associated with any element x of any semigroup S by taking the Schützencertain relations a third group is also studied. these groups is shown to be isomorphic to the a second group is associated with each berger group of the H-class containing x [3, Theorem associated with α . In this paper, Each of

finite [2]. The formula for the cardinality of the θ -class Starting with the definition, it is a difficult task to Τo pute the cardinality of ${\rm H}_{\alpha}$ it is sufficient to compute cardinality of any of the three groups associated with Formulas have been given for the cardinalities of L-, R- and D-classes containing the relation α if X D_{lpha} depends upon the cardinality of the H-class H . the cardinality of a Schützenberger group. automorphisms of second group is a group of compute

BRANDON et al.

lattice, and the structure of this group is sometimes obvious by inspection of the lattice. The third group is a subgroup of the symmetric group on X.

DEFINITIONS

Let \mathcal{B}_{χ} be the set of all binary relations on the set X. For α and β ϵ \mathcal{B}_{χ} , define a product $\alpha\beta$ by (x,y) ϵ $\alpha\beta$ if and only if there exists u ϵ X such that (x,u) ϵ α and (u,y) ϵ β . This makes \mathcal{B}_{χ} into a semigroup, called the semigroup of binary relations on X.

Let $\alpha \in B_{\gamma}$, $x \in X$, and $A \subset X$. Then

 $x\alpha = \{y : (x,y) \in \alpha\},$ $A\alpha = \{y : (x,y) \in \alpha \text{ for some } x \in A\}$ $(= \bigcup_{x \in A} x\alpha),$ $\alpha^{-1} = \{(x,y) : (y,x) \in \alpha\},$ $A' = \{x \in X : x \not\in A\}, \text{ and}$ $V(\alpha) = \{A\alpha : A \subset X\}.$

The set x α is called a <u>row</u> of α and the set $x\alpha^{-1}$ is called a <u>column</u> of α (or a row of α^{-1}). The set $V(\alpha)$ is a lattice under set inclusion, and is called the <u>row lattice</u> of α . The lattice $V(\alpha^{-1})$ is the <u>column lattice</u> of α . A relation α is called <u>row reduced</u> if for each $x \in X$, either (i) $x\alpha = 0$ or (ii) A $\subseteq X$ and $x\alpha = A\alpha$ implies $x \in A$. It follows that α is row reduced if no non-empty row of α is a union of other rows of α . A relation is <u>reduced</u> if both α and α^{-1} are row reduced [5].

Let (L,V,Λ) and (L',V,Λ) be lattices. A <u>lattice</u> isomorphism is a bijection $\phi: L \to L'$ such that $(A \lor B)\phi = (A\phi) \lor (B\phi)$ and $(A \land B)\phi = (A\phi) \land (B\phi)$ for all $A,B \in L$. By Birkhoff [1, p. 22], ϕ is a lattice isomorphism if and only if $\phi: L \to L'$ is a bijection such that $A \le B$ if and only if $A\phi \le B\phi$. A <u>lattice automorphism</u> is an isomorphism $\phi: L \to L$. A <u>lattice anti-isomorphism</u> is a bijection $\psi: L \to L'$ such that $A \le B$ if and only if $A\phi \to B\phi$. Let Aut(L) denote the group of all lattice automorphisms of L.

Let $\Gamma(H)$ be the Schützenberger group of the H-class H; that is, $\Gamma(H)$ is the set of all inner right translations ρ_{α} restricted to H such that $H\alpha\subseteq H$. All other notation follows that of Clifford and Preston [3].

PRELIMINARY RESULTS

The next two lemmas follow directly from definitions.

 $\frac{\text{LEMMA}}{\alpha^{-1}R\beta^{-1}} \stackrel{2}{\sim} \frac{\text{If } \alpha \text{ and } \beta \text{ are } \underline{\text{in }} B_{\chi}, \ \underline{\text{then }} \alpha l\beta \ \underline{\text{if }} \text{ and } \underline{\text{only }} \underline{\text{if }}$

<u>LEMMA</u> 3. If $\alpha \in B_X$ and $A,B \subseteq X$, then $A\alpha \cap B = \square$ if and only if $A \cap B\alpha^{-1} = \square$.

Proof. Both statements are equivalent to the non-existence of a ϵ A and b ϵ B such that (a,b) ϵ α .

The following lemma is due to Zaretskii [6]. A proof is given for completeness.

 $\underline{\text{LEMMA}} \ \underline{4}. \quad \underline{\text{If}} \ A \subseteq X \ \underline{\text{and}} \ \alpha \ \epsilon \ B_X, \ \underline{\text{then}} \ ((((A\alpha)')\alpha^{-1})')\alpha \ = \ A\alpha.$

Proof. Since $A\alpha \cap (A\alpha)' = \Box$, it follows from Lemma 3 that $A \cap ((A\alpha)')\alpha^{-1} = \Box$, and hence $A \subseteq (((A\alpha)')\alpha^{-1})'$. By Lemma 1, $A\alpha \subseteq ((((A\alpha)')\alpha^{-1})')\alpha$.

To show that reverse inclusion, we note that for any subset B of X, x ε B α implies $x\alpha^{-1} \cap B \neq \square$, so that $x\alpha^{-1} \not\subseteq B'$. In particular, if x ε ((((A α)') α^{-1})') α , then $x\alpha^{-1} \cap$ (((A α)') α^{-1})' $\neq \square$, and hence $x\alpha^{-1} \not\subseteq$ ((A α)') α^{-1} . From Lemma 1, we get x $\not\in$ (A α)' and therefore x ε A α .

The following theorem provides an explicit antisomorphism between the lattices $V(\alpha)$ and $V(\alpha^{-1})$. This theorem is a slight modification of a result due to Zaretskii [6]. A sketch of the proof is given.

THEOREM 1. Let α be an element of B_X . The map ψ : $V(\alpha) + V(\alpha^{-1})$ defined by $(A\alpha)\psi = ((A\alpha)')\alpha^{-1}$ is a lattice anti-isomorphism.

Proof. Define $\overline{\psi}$: $V(\alpha^{-1}) + V(\alpha)$ by $(A\alpha^{-1})\overline{\psi} = ((A\alpha^{-1})^{\dagger})\alpha$. It follows from Lemma 4 that $\psi\overline{\psi}$ is the identity on $V(\alpha)$ and $\overline{\psi}\psi$ is the identity on $V(\alpha^{-1})$.

If $A\alpha \subseteq B\alpha$, then $(A\alpha)' \supseteq (B\alpha)'$. By Lemma 1, we get that $(A\alpha)\psi = ((A\alpha)')\alpha^{-1} \supseteq ((B\alpha)')\alpha^{-1} = (B\alpha)\psi$, so that ψ is an order reversing map.

LEMMA 5. Let β be in B_X , ϕ in Aut(V(β)), and define α by (x,y) ϵ α if and only if $(x\beta)\phi \supseteq y\beta$. Then $\alpha\beta L\beta$.

Proof. Define a binary relation γ by $(x,y) \in \gamma$ if and only if $(x\beta)\phi^{-1} \supseteq y\beta$. We will prove that $\alpha\beta L\beta$ by showing that $\beta = \gamma\alpha\beta$.

Suppose (x,y) ϵ β . Then y ϵ $x\beta$, and hence $x\beta$ is non-empty. Since ϕ is an automorphism of $V(\beta)$, it follows that $(A\beta)\phi = []$ if and only if $A\beta = []$. Thus $x\beta = (A\beta)\phi$ for some non-empty subset A of X. Hence

 $y \in x\beta = (A\beta)\phi = (\bigcup_{z \in A} z\beta)\phi = \bigcup_{z \in A} (z\beta)\phi,$ so that $y \in (a\beta)\phi$ for some $a \in A$. Now $x\beta \supseteq (a\beta)\phi$ so that $(x\beta)\phi^{-1} \supseteq a\beta$ and hence $(x,a) \in \gamma$ by definition.

In the same manner, since $(a\beta)\phi$ is non-empty it follows that

 $y \in (a\beta)\phi = B\beta = \bigcup_{w \in B} w\beta$

for some non-empty subset B of X. Thus, y ϵ b β for some b ϵ B, and hence (b,y) ϵ β . Moreover, $(a\beta)\phi \supseteq b\beta$ so that (a,b) ϵ α by the definition of α . It follows that $\beta \subseteq \gamma\alpha\beta$.

To show the reverse inclusion, let $(x,y) \in \gamma \alpha \beta$. Then there exists $u,v \in X$ such that $(x,u) \in \gamma$, $(u,v) \in \alpha$, and $(v,y) \in \beta$. Now $(x,u) \in \gamma$ implies $(x\beta)\phi^{-1} \supseteq u\beta$, which in turn implies $x\beta \supseteq (u\beta)\phi$. Similarly, $(u,v) \in \alpha$ implies $(u\beta)\phi \supseteq v\beta$, and hence $x\beta \supseteq v\beta$. Now $(v,y) \in \beta$ means $y \in v\beta$ and thus $y \in x\beta$ so that $(x,y) \in \beta$, and hence $\gamma \alpha \beta \subseteq \beta$. It follows that $\gamma \alpha \beta = \beta$, and hence $\alpha \beta L\beta$.

MAIN RESULTS

The following theorem will make it possible to define a map from the automorphism group of $V(\beta)$ into the dual Schützenberger group of the H-class containing β .

THEOREM 2. Let β ϵ β_X , ϕ ϵ Aut(V(β)), and define α by (x,y) ϵ α if and only if $(x\beta)\phi$ \geq $y\beta$. Then $\alpha\beta$ H β .

Proof. We have $\alpha\beta L\beta$ from Lemma 5. Let $\overline{\phi} = \psi^{-1}\phi\psi$ where $\psi: V(\beta) \to V(\beta^{-1})$ is the anti-isomorphism of Theorem 1 defined by $(A\beta)\psi = ((A\beta)')\beta^{-1}$. Then $\overline{\phi}$ and $\overline{\phi}^{-1}$ are both in $\operatorname{Aut}(V(\beta^{-1}))$. If δ is defined by $(x,y) \in \delta$ if and only if $(x\beta^{-1})\overline{\phi}^{-1} \supseteq y\beta^{-1}$, then $\delta\beta^{-1}L\beta^{-1}$ by Lemma 5. Using Lemma 2, we get $\beta\delta^{-1}R\beta$. To show that $\alpha\beta H\beta$ it is sufficient to show that $\alpha\beta = \beta\delta^{-1}$.

We first show that $\alpha\beta \subseteq \beta\delta^{-1}$. Let $(x,y) \in \alpha\beta$. Then $(x,u) \in \alpha$ and $(u,y) \in \beta$ for some $u \in X$. Thus, $u \in y\beta^{-1} = (A\beta^{-1})\overline{\phi} = (\bigcup_{\alpha \in \Lambda} z\beta^{-1})\overline{\phi} = \bigcup_{\alpha \in \Lambda} (z\beta^{-1})\overline{\phi}$

for some non-empty subset A of X, so that $u \in (a\beta^{-1})\overline{\phi}$ for some $a \in A$. We now show that $(x,a) \in \beta$. Suppose, on the contrary, that $(x,a) \not\in \beta$. From the definition of ψ it follows that $(x\beta)\psi = ((x\beta)')\beta^{-1} \supseteq a\beta^{-1}$. Since ψ is order reversing, we get $x\beta \subseteq (a\beta^{-1})\psi^{-1}$, and hence $(x\beta)\phi \subseteq (a\beta^{-1})\psi^{-1}\phi$. Now $(x,u) \in \alpha$ implies $u\beta \subseteq (x\beta)\phi$, and hence $u\beta \subseteq (a\beta^{-1})\psi^{-1}\phi$, from which it follows that $(u\beta)\psi \supseteq (a\beta^{-1})\psi^{-1}\phi\psi = (a\beta^{-1})\overline{\phi}$. But $u\in (a\beta^{-1})\overline{\phi}$, and hence $u\in (u\beta)\psi = ((u\beta)')\beta^{-1}$, which implies $u\beta \cap (u\beta)' \neq \Box$, which is impossible. Hence $(x,a) \in \beta$.

It remains to show that $(a,y) \in \delta^{-1}$. Now $y\beta^{-1} \supseteq (a\beta^{-1})\overline{\phi}$ and hence it follows that $(y\beta^{-1})\overline{\phi}^{-1} \supseteq a\beta^{-1}$. By the definition of δ we have $(y,a) \in \delta$ and hence $(a,y) \in \delta^{-1}$.

We now have $\alpha\beta \subseteq \beta\delta^{-1}$. The proof of the reverse inclusion is now immediate, for $(x,y) \in \beta\delta^{-1}$ implies $(y,x) \in \delta\beta^{-1} \subseteq \beta^{-1}\alpha^{-1}$ by the first part of the proof (with β replaced by β^{-1} , ϕ replaced by $\overline{\phi}^{-1}$, and α replaced by δ), hence $\alpha\beta = \beta\delta^{-1}$.

The following lemma is a special case of a theorem in Clifford and Preston [3, Theorem 2.3].

<u>LEMMA 6. Let H be an H-class of a semigroup S. If t ε S and tg ε H for some g ε H, then tH \subseteq H.</u>

If α is H-related to β , then $V(\alpha) = V(\beta)$ [6]. Thus, if the lattice corresponding to an H-class is interpreted as the row lattice of any element of the H-class, then the following theorem shows that the Schützenberger group of an H-class of β_X is isomorphic to the automorphism group of the lattice corresponding to the H-class. This is an extension of a result of Zaretskii [6, Theorem 3.9].

THEOREM 3. Let X be a non-empty set. If H is an H-class of B_X and β ϵ H, then the automorphism group of $V(\beta)$ is isomorphic to the Schützenberger group of H.

Proof. We will construct an anti-isomorphism from $Aut(V(\beta))$ onto the dual Schützenberger group $\Gamma'(H)$.

For $\alpha \in \mathcal{B}_\chi$, let λ_α denote inner left translation by α restricted to H; that is, $x\lambda_\alpha$ = αx for all $x \in H$. The \underline{dual} Schützenberger group of H is the set $\Gamma^{\, {\rm t}}(H)$ of all λ_α such that $\alpha H \subseteq H$.

Define a map Λ : Aut(V(β)) \rightarrow $\Gamma'(H)$ by $\phi\Lambda = \lambda_{\alpha}$ where α is the binary relation determined by (x,y) ϵ α if and only if $(x\beta)\phi \supseteq y\beta$. By Theorem 2, $\alpha\beta$ ϵ H. From Lemma 6, it follows that $\alpha H \subseteq H$, and hence λ_{α} is indeed an element of $\Gamma'(H)$.

Define $\overline{\Lambda}$: $\Gamma'(H) \to \operatorname{Aut}(V(\beta))$ by $(\lambda_{\alpha})\overline{\Lambda} = \phi$ where $(A\beta)\phi = A\alpha\beta$ for all $A\beta \in V(\beta)$. We will show that Λ is one-to-one and onto by showing that $\overline{\Lambda}$ is a two-sided inverse for Λ .

We need to show that ϕ ϵ AutV(β)). To show that ϕ is well-defined, we note that $\alpha\beta$ = $\beta\rho$ for some ρ ϵ B_{χ} since $\alpha\beta$ H β . Thus, if $A\beta$ = $B\beta$, then $A\beta\rho$ = $B\beta\rho$, and hence

 $(A\beta)\phi = A\alpha\beta = A\beta\rho = B\beta\rho = B\alpha\beta = (B\beta)\phi$.

There is also a relation μ such that $\alpha\beta\mu$ = β . Hence, if $(A\beta)\varphi$ = $(B\beta)\varphi$, then $A\alpha\beta$ = $B\alpha\beta$, which implies $A\beta$ = $A\alpha\beta\mu$ = $B\alpha\beta\mu$ = $B\beta$. It follows that φ is one-to-one.

Since $\beta = \sigma\alpha\beta$ for some relation σ , we have, for any $A\beta \in V(\beta)$, $[(A\sigma)\beta]\phi = (A\sigma)\alpha\beta = A\sigma\alpha\beta = A\beta$, so that ϕ maps $V(\beta)$ onto $V(\beta)$.

It is straightforward to show that $A\beta\subseteq B\beta$ if and only if $(A\beta)\phi\subseteq (B\beta)\phi$, and hence that ϕ ϵ Aut(V(β)).

Let $\theta \in \operatorname{Aut}(V(\beta))$ and let $\phi = (\theta) \Lambda \overline{\Lambda}$ where $\theta \Lambda = \lambda_{\alpha}$. Let $A\beta \in V(\beta)$. Then $(A\beta)\phi = A\alpha\beta$. If $b \in (A\beta)\theta$, then $b \in (a\beta)\theta$ for some $a \in A$. Thus there exists $c \in X$ such that $b \in c\beta \subseteq (a\beta)\theta$. Hence $(a,c) \in \alpha$ (by definition of α), $(c,b) \in \beta$ and thus $b \in A\alpha\beta$. Consequently, $(A\beta)\theta \subseteq A\alpha\beta$.

Conversely, let $x \in A\alpha\beta$. Then $(a,x) \in \alpha\beta$ for some $a \in A$, so that $(a,u) \in \alpha$ and $(u,x) \in \beta$ for some $u \in X$. Hence $(a\beta)\theta \supseteq u\beta$ and $x \in u\beta$ implies $x \in (a\beta)\theta \subseteq (A\beta)\theta$. Thus, $(A\beta)\theta = (A\beta)\phi$ for every $A\beta \in V(\beta)$ so that $\theta = \phi$. It follows that $\Lambda\overline{\Lambda}$ is the identity on $Aut(V(\beta))$.

Let λ_{α} $\in \Gamma'(H)$, let $\lambda_{\gamma} = \lambda_{\alpha} \overline{\Lambda}\Lambda$ and let $\phi = \lambda_{\alpha} \overline{\Lambda}$. Then (x,y) $\in \gamma$ if and only if $(x\beta)\phi \supseteq y\beta$; that is, if and only if $x\alpha\beta \supseteq y\beta$. Suppose (x,y) $\in \alpha\beta$. Then (x,u) $\in \alpha$ and (x,y) $\in \beta$ for some u $\in X$. Thus, u $\in x\alpha$ implies $u\beta \subseteq x\alpha\beta$ and therefore (x,u) $\in \gamma$. It follows that (x,y) $\in \gamma\beta$ and hence $\alpha\beta \subseteq \gamma\beta$.

Conversely, if $(x,y) \in \gamma\beta$, then $(x,v) \in \gamma$ and $(v,y) \in \beta$ for some $v \in X$. Now $(x,v) \in \gamma$ implies $v\beta \subseteq x\alpha\beta$, and since $y \in v\beta$, it follows that $y \in x\alpha\beta$; that is, $(x,y) \in \alpha\beta$. Therefore, $\lambda_{\alpha} = \lambda_{\gamma}$ and hence $\overline{\Lambda}\Lambda$ is the identity on $\Gamma'(H)$.

Since $\lambda_{\alpha\delta}=\lambda_{\delta}\lambda_{\alpha}$, it is not difficult to show that $\overline{\Lambda}$ is an anti-homomorphism; that is $(\lambda_{\alpha}\lambda_{\delta})\overline{\Lambda}=(\lambda_{\delta}\overline{\Lambda})(\lambda_{\alpha}\overline{\Lambda})$. It then follows that Λ is also an anti-homomorphism and therefore Aut(V(β)) is anti-isomorphic to Γ '(H). Since Γ '(H) is in turn anti-isomorphic to Γ (H), it follows that Aut(V(β)) and Γ (H) are isomorphic and the proof is complete.

For β ϵ B_χ , let T_β = { σ ϵ G_χ : $\sigma\beta$ = $\beta\rho$ for some ρ ϵ G_χ and $x\sigma$ = x if $x\beta$ = \square }, where G_χ is the symmetric group on X. It is straightforward to show that T_β is a subgroup of G_χ .

The following theorem gives another characterization

BRANDON et al.

of the Schützenberger group $\Gamma(H_\beta)$ if β is a reduced relation. A special case of this theorem is due to Montague and Plemmons [4, Theorem 3.5].

Proof. To prove that T_{β} is isomorphic to $\Gamma(H_{\beta})$ we show that T_{β} is isomorphic to $\operatorname{Aut}(V(\beta))$, then apply Theorem 3. Define a map $\Phi: T_{\beta} + \operatorname{Aut}(V(\beta))$ by $\sigma\Phi = \phi_{\sigma}$ where $(A\beta)\phi_{\sigma} = A\sigma\beta$. It is routine to show that $\phi_{\sigma} \in \operatorname{Aut}(V(\beta))$, that Φ is a homomorphism, and that Φ is one-to-one.

To show that Φ is onto, let φ ϵ Aut(V(β)). Define σ by

$$x\sigma = \begin{cases} y & \text{if } x\beta \neq \square \text{ and } (x\beta)\phi = y\beta \\ x & \text{if } x\beta = \square. \end{cases}$$

Since β is a reduced relation and since ϕ maps the set of join-irreducible elements of $V(\beta)$ onto itself, it follows that if $x\beta \neq \square$, then $(x\beta)\phi = y\beta$ for some $y \in X$. Furthermore, if $x\beta$ and $y\beta$ are non-empty and $(x\beta)\phi = (y\beta)\phi$, then $x\beta = y\beta$, but β is reduced, and hence x = y. It follows that $\sigma \in \mathcal{G}_{Y}$.

To show that $\sigma \in T_{\beta}$ it suffices to show that $\sigma\beta = \beta\rho$ for some $\rho \in G_{\chi}$. We first show that $\sigma\beta\mathcal{H}\beta$. Let α be defined as in Theorem 2; that is, $(x,y) \in \alpha$ if and only if $(x\beta)\phi \supseteq y\beta$. We show that $\sigma\beta = \alpha\beta$ and then apply Theorem 2 to conclude that $\alpha\beta\mathcal{H}\beta$. Certainly $\sigma \subseteq \alpha$, and hence $\sigma\beta \subseteq \alpha\beta$.

On the other hand, suppose (x,y) ε $\alpha\beta$. Then there exists u ε X such that (x,u) ε α and (u,y) ε β . This means that y ε $u\beta \subseteq (x\beta)\phi$. It follows that $x\beta \ne \square$ so that $(x\beta)\phi = z\beta$ for some z ε X. But then y ε $z\beta$ and (x,z) ε σ , which implies (x,y) ε $\sigma\beta$. Hence $\sigma\beta = \alpha\beta$.

It follows from a theorem of Plemmons and West that $\sigma\beta$ = $\beta\rho$ for some ρ ϵ G_X [5, Theorem 1.9]. Hence σ ϵ T_{β} . To show that Φ is onto, it remains to show that $\sigma\Phi = \Phi$. Let x ϵ X. If $x\beta = \Box$, then $(x\beta)(\sigma\Phi) = (x\beta)\phi_{\sigma} = x\sigma\beta = x\beta = \Box$ and hence $(x\beta)\phi = \Box$. Suppose $x\beta \neq \Box$. Then $x\sigma = y$ where $(x\beta)\phi = y\beta$. But then $(x\beta)\phi_{\sigma} = x\sigma\beta = y\beta = y\beta$

 $(x\beta)\phi$. Therefore $\phi = \phi_{\sigma} = \sigma \Phi$.

Proof. Since X is finite, the $\mathcal{D}\text{-class D}_\beta$ contains a reduced relation α [4]. Thus, $\Gamma(H_\beta) \subseteq \Gamma(H_\alpha) \subseteq T_\alpha$.

REFERENCES

- [1] Birkhoff, G., <u>Lattice theory</u>, A.M.S. Colloquium Publ., Vol. 25, 2nd ed., Providence, 1948.
- [2] Brandon, R. L., K. K.-H. Butler, D. W. Hardy and G. Markowsky, <u>Cardinalities of P-classes in B</u>_n, Semi-group Forum 4(1972), 341-344.
- [3] Clifford, A. H. and G. B. Preston, <u>The algebraic</u> theory of semigroups, A.M.S. Surveys, Vol. I, Providence, 1961.
- [4] Montague, J. S. and R. J. Plemmons, <u>Maximal subgroups</u> of the <u>semigroup</u> of <u>relations</u>, J. of Algebra 13(1969), 575-587.
- [5] Plemmons, R. J. and M. T. West, On the semigroup of binary relations, Pac. J. of Math. 35(1970), 743-753.
- [6] Zaretskii, K. A., The semigroup of binary relations, Mat. Sbornik 61(1963), 291-305.

Colorado State University, Fort Collins, Colorado 80521 Colorado State University, Fort Collins, Colorado 80521 Harvard University, Cambridge, Massachusetts 02138

Received December 17, 1971; revised June 21, 1972.