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BRANDON et al.

lattice, and the structure of this group is sometimes ob-

vious by inspection of the lattice. The third group is a
subgroup of the symmetric group on X.

DEFINITIONS

Let BX be the set of all binary relations on the set
X. For a and B ¢ Bx, define a product aB by (x,y) € aB if
and only if there exists u € X such that (x,u) € o and
(u,y) & B. This makes Bx into a semigroup, called the
semigroup of binary relations on X.

Let a € BX’ x € X, and A € X. Then

xa = {y : (x,y) € a},
Aa = {y : (x,y) € o for some x £ A}

-1 (= UxeAxu)’
o © = {(x,y) : (y,x) € al},
A' = {x e X : x ¢ A}, and

V(a) = {Aa : A C X}.

The set xa is called a row of o and the set xa_l is

called a column of a (or a row of a_l). The set V(a) is a
lattice under set inclusion, and is called the row lattice
of a. The lattice V(a_l) is the column lattice of a. A
relation a is called row reduced i1f for each x € X, either
(1) xa =0 or (11) A € X and Xa = Ao implies x € A. It
follows that a is row reduced if no non-empty row of a is
a union of other rows of a. A relation is reduced if both
a and a”! are row reduced [51].

Let (L,V,A) and (L',V/,A) be lattices. A lattice
isomorphism is a bijection ¢ : L + L' such that (A \ B)¢ =
(Ad) v (Bd) and (A A Bl = (Ad) A (B$) for all A,B e L.

By Birkhoff [1, p. 22], ¢ is a lattice isomorphism if and
only if ¢ : L - L' is a bijection such that A < B if and
only if A¢ < Bé. A lattice automorphism is an isomorphism
¢:L > L. A lattice anti-isomorphism is a bijection

v:L > L' such that A < B if and only if Ay > By. Let

Aut (L) denote the group of all lattice automorphisms of L.
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Let T(H) be the Schiitzenberger group of the H-class Hj
that is, ['(H) is the set of all inner right translations Py
restricted to H such that Ha ¢ H. All other notation
follows that of Clifford and Preston [3].

PRELIMINARY RESULTS
The next two lemmas follow directly from definitions.

LEMMA 1. Let o be any relation in BX and let A and B be
subsets of X. Then A C B implies Aa C Ba.

LEMMA 2. If o and B are in By, then olB if and only if

a_lks_l.
LEMMA 3. If a € BX and A,B ¢ X, then AaN B =0 if and

only if AN Ba™l =D.

Proof. Both statements are equivalent to the non-existence
of a € A and b € B such that (a,b) e a.

The following lemma is due to Zaretskii [6]. A proof

is given for completeness.
-1 _
LEMMA 4. If A C X and o € By, then ((((Aa)")o ") ')a = Aa.

Proof. Since Ao N (Aa)' =0, it follows from Lemma 3 that
AN ((Aoz)')ot_1 =1, and hence A C (((Aa)')a'l)'. By
Lemma 1, A € ((((Aa)")o™1)")a.

To show that reverse inclusion, we note that for any
subset B of X, x € Bo implies xaln B # 0, sg that
xa~l ¢ B'. 1In particular, if x e ((((Aa)')a ~)')a, then
xa_ll; (((Aa)")a™1)' # 0, and hence xa ™t 4 ((Aa)")a"t.
From Lemma 1, we get x ¢ (Aa)' and therefore x e Aa.

The following theorem provides an explicit anti-
isomorphism between the lattices V(a) and V(a—l). This
theorem is a slight modification of a result due to
Zaretskli [6]. A sketch of the proof 1s given.
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THEOREM 1. Let a be an element of BX' The map v :
-1

-1
V(o) > V(a™) defined by (Aa)¥ = ((Aa)')a™l is a lattice
anti-isomorphism.

£

Proof. Define ¥: V(a™l) » v(a) by (Aa~1)¥ =((aa~1)")a.
It follows from Lemma 4 that vy 1s the identity on V(o) and
Y¥ is the identity on V(a~l).

If Aa € Ba, then (Aa)' D5 (Ba)'. By Lemma 1, we get
that (Aa)y = ((Ax)")a™d 2 ((Ba)")a™! = (Ba)y, so that y is
an order reversing map.

LEMMA 5. Let 8 be in By, ¢ in Aut(V(B)), and define o by
(x,y) € o if and only 1if (xB)¢ D yB. Then aBLB.

Proof. Define a binary relation y by (x,y) € v if and only

-1
if (x8)¢ ~ > yB. We will prove that aBLB by showing that
B = yaB.

Suppose (x,y) € B. Then Yy € xB, and hence x8 is non-empty.
Since ¢ is an automorphism of V(B8), it follows that
(AB)¢ =[] if and only if AB =(]. Thus xB = (AB)¢ for some
non-empty subset A of X. Hence
y € xB = (AB)¢ = (U, ca28)0 = U,.n(zB)0,

so that y € (aB)¢ for some a ¢ A. Now xB > (aB)¢ so that
(xB)¢~t 2 aB and hence (x,a) € y by definigion.

In the same manner, since (aB)¢ is non-empty it
follows that

y € (aB)¢ = BB =U,.p"8

for some non~empty subset B of X. Thus, y € bB for some
b e B, and hence (b,y) € B. Moreover, (aB)® > bB so that
(a,b) € a by the definition of a. Tt follows that B C yaB.

To show the reverse inclusion, let (x,y) € yaB._ Then
there exists u,v e X such that (x,u) e Y, (u,v) € a, and
(v,y) € B. Now (x,u) € y implies (xB)qb-1 D uB, which in
turn impllies xB D (uB)¢. Similarly, (u,v) ¢ a implies
(uB)$ > vB, and hence x8 2VvB. Now (v,y) ¢ B means y ¢ vB
and thus y e xf so that (x,y) € 8, and hence yaB C B. It
follows that yaB = 8, and hence aBL8B. B
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MAIN RESULTS

The following theorem will make 1t possible to define
a map from the automorphism group of V(8) into the dual
Schiitzenberger group of the H-class containing 8.

THEOREM 2. Let B € By, ¢ € Aut(V(B)), and define a by
(x,y) € o if and only if (xB)¢ > yB. Then aBHB.

Proof. We have oBfLB from Lemma 5. Let ¢ = ¢—1¢W where
v: V(B) - V(B_l) is the anti-isomorphism of Theorem 1
defined by (AB)¥ = ((AB)')8™L. Then § and 3! are both
in Aut(V(B_l)). If 8§ is defined by (x,y) € 8 if and only
if (xBnl)E)_1 o} yB_l, then 68~ 1Lg™! by Lemma 5. Using
Lemma 2, we get Bé‘lRB. To show that aBHB it 1s sufficient
to show that a8 = B8 L.

We first show that aB C 66_1. Let (x,y) € aB. Then
(x,u) € a and (u,y) € B for some u € X. Thus,

ueys ™t = (A8THT = (U, ,z87HF = U, , (28" 1)F
for some non-empty subset A of X, so that u € (a8-1)$ for
some a € A. We now show that (x,a) € B. Suppose, on the
contrary, that (x,a) ¢ 8. From the definition of ¥ it
follows that (x8)y = ((xB)')B_1 2 aB-l. Since ¢ 1s order
reversing, we get x8 c (aB—l)w-l, and hence (x8)¢ C
(ae—l)w—l¢. Now (x,u) € a implies uB ¢ (xB)¢, and hence
ug < (aB™1)y™Y¢, from which it follows that (uB)y 2
(aB_l)w—l¢w = (aB_l)E. But u e (aB_l)E, and hence u €
(ug)y = ((uB)')B‘l, which implies uf N (ug)' #0O, which
is impossible. Hence (x,a) e B.

It remains to show that (a,y) € &
(a6_1)$ and hence it follows that (y(ﬁ_l)@_1 > aB_l. By

the definition of & we have (y,a) € § and hence (a,y) €
-1
§ .

1 Now yB-l pe}

We now have aB C Bd_l. The proof of the reverse
inclusion is now immediate, for (x,y) € Bé°l implies

(y,x) ¢ 6871 < 8”171 by the first part of the proof (with
B replaced by B_l, ¢ replaced by 6_1, and a replaced by
8§), hence aB = BS§~
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The following lemma is a special case of a theorem in
Clifford and Preston [3, Theorem 2.3].

LEMMA 6. Let H be an H-class of a semigroup S. If t e S
and tg € H for some g € H, then tH C H.

If a 1s H-related to B, then V(a) = V(B8) [6]. Thus,
if the lattice corresponding to an H-class is interpreted
as the row lattice of any element of the H-class, then the
following theorem shows that the Schiitzenberger group of
an H-class of BX is isomorphic to the automorphism group
of the lattice corresponding to the H-class. This 1s an
extension of a result of Zaretskii [6, Theorem 3.9].

THEOREM 3. Let X be a non-empty set. If H 1s an H-class
of BX and 8 ¢ H, then the automorphism group of V(B) 1s
isomorphic to the Schiitzenberger group of H.

Proof. We will construct an antli-isomorphism from
Aut (V(B)) onto the dual Schiutzenberger group I''(H).

For a € BX’ let Aa denote inner left translation by o
restricted to H; that is, an = ax for all x € H. The
dual Schiitzenberger group of H is the set I*(H) of all Ay
such that aH < H.

Define a map A Aut(V(B)) - T'(H) by ¢A = Aa where
a is the binary relation determined by (x,y) € o if and
only if (xB8)¢ 2 yB. By Theorem 2, aB ¢ H. From Lemma 6,
it follows that aH € H, and hence Aa is indeed an element
of T'(H).

Define R : T'(H) > Aut(V(B)) by (AQ)K = ¢ where
(AB)¢ = AcB for all AB € V(B). We will show that A 1is
one-to-one and onto by showing that X is a two-sided in-
verse for A.

We need to show that ¢ £ AutV(g)). To show that ¢ 1s
well-defined, we note that af = Bp for some p € BX since
aBHR. Thus, if AB = BB, then ABp = BBp, and hence

(AB)® = AaB = ABp = BBp = BaB = (BB)¢.

There is also a relation u such that aBu = B. Hence,
if (AB)¢ = (BBR)¢, then Aaf = BoaB, which implles AB =
AaBu = BaBup = BB. It»follows that ¢ 1s one-to-one.
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Since B = oaf for some relation o, we have, for any
AR € V(B), [(Ac)Bl¢ = (Ac)aB = AcaB = AB, sO that ¢ maps
V(B) onto V(B).

Tt is straightforward to show that AR < BB if and
only if (AB)¢ < (BB)¢, and hence that ¢ € Aut (V(B)).

Let & € Aut(V(B)) and let ¢ = (8)AK where 6A = A
Let AB ¢ V(B). Then (AB)¢ = AaB. If b e (AB)6, then
b € (aB)d for some a € A. Thus there exists c ¢ X such
that b € cB C (aB)8. Hence (a,c) e a (by definition of
a), (c,b) ¢ B and thus b e AaB. Consequently, (AB)6 C AaB

Conversely, let x € AaB. Then (a,x) € aB for some
a e A, so that (a,u) € a and (u,x) e B for some u € X.
Hence (aB)® 2 up and x € uf implies x € (aB)® < (AB)S.
Thus, (AB)® = (AB)¢ for every AR € V(B) so that 8 = ¢. It
follows that AR is the identity on Aut(V(B)).

Let A, € I''(H), let AY = AGKA and let ¢ = xaK. Then
(x,y) € y if and only if (xB8)¢ D yB; that is, if and only
if xaB D yB. Suppose (x,y) € aB. Then (x,u) € a and
(x,y) € B for some u € X. Thus, u e xa implles up < xa8
and therefore (x,u) € y. It follows that (x,y) € yB and

a’

hence of C YB.

Conversely, if (x,y) e yB, then (x,v) ¢ vy and
(v,y) € B for some v € X. Now (x,v) € vy implies vB & xaB,
and since y € vB, 1t follows that y € xaB; that 1is,

(x,y) € aB. Therefore, Aa = AY and hence RA 1s the iden-~
tity on T''(H).

Since Aaé = AGAG, it 1s not difficult to show that iy
is an anti-homomorphism; that is (XaAG)K = (ASK)(XQK). It
then follows that A is also an anti-homomorphism and
therefore Aut(V(8)) is anti-isomorphic to T'(H). Since
I'(H) is in turn anti-isomorphic to T(H), 1t follows that
Aut (V(8)) and T (H) are isomorphic and the proof 1s com-
plete.

For B € BX’ let TB = {0 ¢ Gx 0B = Bp for some

p € GX and xo = x if xB =0}, where GX is the symmetric
group on X. It is straightforward to show that TB is a
subgroup of GX'

The following theorem gives another characterization
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of the Schiitzenberger group F(HB) if B is a reduced re-
lation. A special case of this theorem is due to Montague
and Plemmons [4, Theorem 3.5].

THEOREM 4. Let B be a reduced relation in By. Then F(HB)
is isomorphic to the subgroup Tg of Gy

Proof. To prove that TB is isomorphic to F(HB) we show
that TB 1s isomorphic to Aut(V(B)), then apply Theorem 3.
Define a map ¢ : TB + Aut(V(B)) by o¢ = ¢, where (AB)¢o =
AcB. It is routine to show that ¢, € Aut(V(B)), that ¢ is
a homomorphism, and that ¢ is one-to-one.

To show that ¢ 1s onto, let ¢ € Aut(V(B)). Define o
by

y if xB #[0 and (xB)¢ = yB

Xo =
x if xg =(0.

Since B 1s a reduced relation and since ¢ maps the set of
Join-irreduclible elements of V(B) onto itself, it follows
that if xB #[J, then (xB)¢ = yB for some y € X. Further-
more, 1f xB and yB are non-empty and (x8)¢ = (yB)¢, then
xB = yB, but B 1is reduced, and hence x = y. It follows
that o € GX'

To show that o ¢ ‘I‘8 it suffices to show that o8 = Bp
for some p € GX' We first show that oBHR. Let a be de-
fined as in Theorem 2; that 1is, (x,y) € a if and only if

(xB)® D yB. We show that gB = aB and then apply Theorem 2

to conclude that aBHB. Certainly o < a, and hence dB<C aB.

On the other hand, suppose (x,y) € aB. Then there
exists u ¢ X such that (x,u) € a« and (u,y) € B. This
means that y € uB € (x8)¢. It follows that xB #[Jso that
(xB)¢ = zB for some z € X. But then y € zB and (x,z) € o,
which implies (x,y) € oB. Hence o8 = aB.

It follows from a theorem of Plemmons and West that

o8 Bp for some p € GX [5, Theorem 1.9]. Hence o ¢ TB'
To show that ¢ is onto, it remains to show that

ov = ¢. Let x € X. If xB =[1, then (xB)(0d) = (x8)¢, =
x08 = xB =[] and hence (xB)¢ =[{J. Suppose x8 #[]. Then

Xo = y where (xB)¢ = yB. But then (x8)¢0 = X0B = yB =
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(xB)¢. Therefore ¢ = ¢y = 00.

COROLLARY. Suppose X is finite and let 8 ¢ Bx. Then
there exists a ¢ BX such that aDB and F(HB):: Ta'

Proof. Since X is finite, the D-class DB contains a re-
duced relation a [4]. Thus, F(HB):: F(HQ):: Ta'
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