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ABSTRACT. Three families of strategies for organizing an index of ordered keys are investigated. It is assumed
cither that the index is small enough to fit in main memory or that some superstrategy organizes the index into
pages and that search within a page is being studied. Examples of strategies within the three families are B-tree
Search, Binary Search, and Square Root Search. The expected access times of these and other strategies are
compared, and their relative merits in different indexing situations are discussed and conjectured on. Considering
time and space costs and complexity of programming, it ts concluded that a Binary Search strategy is generally
preferable.
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1. Introduction

In this paper we provide a theoretical framework allowing comparison of various strategies
for indexing a data base. We investigate three families of strategies for organizing an index
of ordered keys. Each strategy considered must support random accesses, inserts, and
deletes, as well as order-dependent operations such as

RETRIEVE THE NEXT HIGHER KEY IN THE INDEX.

(In particular, this explicitly eliminates hashing strategies from consideration [3].) However.
in this paper we concentrate almost exclusively on random access time. An index entry is
assumed to be a pair consisting of a key and a pointer; but we make no assumption about
other information which may be stored with an entry or about whether information in
index entries is stored in a compressed form. We assume either that the index is small
enough to fit in main memory or that some superstrategy organizes the index into pages
and that we are studying search within a page. For example, the reader may assume that
pages of the index are organized into a B-tree and that we are simply studying the
organization of each page.

Our intention is to model each strategy sufficiently accurately to allow practical
comparison while remaining machine and system independent. The level of precision we
have chosen lies between counting key comparisons and counting machine instructions.
We exhibit significant differences between strategies that do not show up at the level of
key comparisons.
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We have named the families of strategies Tree Search, after the B-tree, Root Search,
after Square Root Search, and Binary Search. Specific B-tree and Square Root Search
strategies we consider are those used in VSAM (an IBM product: Virtual Storage Access
Method). For this paper we use B-tree to refer to the VSAM modification of the B-tree
strategy of [1] (called M-tree in [5]).

In the next section we describe our modeling technique by example. Then, in the
following three sections we describe and analyze each of the three families of strategies.
Section 5 also contains a brief discussion of radix or Patrician strategies [3, 10]. Section 6
is devoted to comparison with respect to random access time. Section 7 contains a
discussion of space and other costs beyond the scope of the model presented in this paper.
We conclude from this discussion that some form of Binary Search strategy is generally
preferable to the strategies of the other two families for search within a page. This paper
refines results of [2] together with those of [4].

2. The Model

We describe our modeling technique by presenting a paradigm for search strategies:
Sequential Search. For Sequential Search, the index entries are totally ordered (from left
to right) by increasing key order. Given a key, random access is achieved by searching
each entry from left to right until one is found with a key greater than or equal to the
given. Then its associated pointer is followed either to the data or 0 another page of the
index. Random insertion (or deletion) into the index is achieved by locating the point of
insert (delete) and moving the remaining entries to the right (left) a sufficient amount to
allow the insert (delete). The index is ordered so that, once a particular entry has been
located, locating the next higher key requires simply moving to the right.

Since we are only modeling random access in the index, the program scheme of Figure
1 and organization graph of Figure 2 serve to characterize our model of Sequential Search.
Here we begin to introduce our notation. The program scheme is not to be thought of as
the program implementing Sequential Search, but rather as a representation of the
sequencing of operations which any program implementing Sequential Search must
achieve. The nodes of the program scheme are commands, e.g., [FIND FIRST KEY],
[COMPARE], [NEXT], or diamonds indicating a branch point. The arcs indicate sequenc-
ing. We often abbreviate commands by the first letters or their words. Thus, a typical
sequence of operations for sequential search would be [FFK; C; N; C; N; C].

The program scheme represents a regular set of these expressions for sequences of
operations. The organization graph offers an interpretation (semantics) for the commands
and limits the number of possible sequences of operations. Since there are seven nodes
(the index size) in Figure 2, the set of possible sequences corresponding to Figures 1
and 2 is {[FFK;C], [FFK;C;N; C}, [FFK;C;N; G, N;C], [FFK;C; N; C; N; C; N; C},
[FFK; G;N; G N G NG N; C], [FFK;CN; G NG N; G N;CN;C], [FFK;C;N;
C;N; G, N; C;N; G N; C; N; CJ} . In this paper we do not formally specify the interpre-

FIND FIRST KEY

COMPARE “—-I OO O=+O=+O—=+0—+O

NEXT

FiG. 1. Sequential Search program scheme FiG. 2. Sequenual Search organization graph
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tation of a program scheme over an organization graph; we merely indicate that such a
formal semantics is possible. We are correspondingly informal about the labeling of arcs
and nodes in the organization graph, but we generally distinguish between two types of
nodes: those corresponding to entries with associated pointers pointing out of the index
(page), and those with local pointers. The former are called goal nodes and are represented
by open circles; the latter are called nongoal nodes and are represented by solid circles.
Sometimes the arcs are labeled to indicate to which commands they correspond. The size
of an organization graph is the number of its goal nodes. This is the index size to which it
corresponds. However, when the generalization is obvious, we use a single typical organi-
zation graph to indicate the set of all organizations (corresponding to all index sizes) for a
particular strategy.

The basic time unit for time comparison of all of our strategies is the time taken to
execute [N; C], the loop of Sequential Search. All other execution times are compared to
this one. It turns out that every sequence of every strategy we study has [FFK; C] as a
prefix. Moreover, it never appears except as a prefix. Since our purpose is performance
comparison rather than absolute performance prediction, we allocate a time of 0 to the
execution of [FFK; C]. We assume that in a random access, each goal node is equally likelv
to be the goal of the search. Thus, for an index of size N, the expected sequential search
time is

SE(N) = }(N - 1). @.n

Sequential Search is a specific strategy rather than a family of strategies. Its access time
cost depends only on index size. It is, however, a degenerate case of each of the families of
strategies we study, and its analysis forms a pattern for the other analyses.

3. Tree Search

The family of Tree Search strategies all possess the program scheme of Figure 3 and an
organization graph which is a binary tree as in Figure 4. This family is distinguished from
the other families we study by the existence of nongoal nodes in the organization graph.
Each goal node has at most one child, this child being reachable by the [NEXT] command.
A nongoal node may have two children, one reachable by [NEXT} and one by
[FFKANLY], which follows its local pointer. The loops of Figure 3 and corresponding arcs
of Figure 4 have been labeled with a and 8 to show which loop follows which arcs. The
four types of nodes of Tree Search organization graphs are as follows:

© a7 By BR«
G G G (iv)

For the rest of this section, tree refers to a tree of nodes of types (i) through (iv). Nodes of
type (i) are also called leaves.
We use the following notation:
t atree;
v: a node;
s.(v): the a-successor of node »,
sg(v): the B-successor of node v,
st,(v): the a-subtree of »,
sty(v): the B-subtree of v,
v(v): the value of the key at ».
The final defining properties of the family of Tree Search strategies specify the order
restrictions on keys associated with the organization graph:

vr) < v(r) for v in st.(m). (3.1)
v(r)) = v(re) for p in sty(»). (3.2)
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l

FIND FIRST KEY

Y

COMPARE
a B
NEXT «
o
FIND FIRST KEY AT NEXT LEVEL
F1G. 3. Tree Search program scheme FiG. 4. Tree Search organization graph

With any organization tree satisfying (3.1) and (3.2), a decision to take the 8-loop when
the target key is less than or equal to the value of the key at the current node, and to take
the a-loop otherwise, if possible, will leave the index (page) from the correct goal node.
Random insertion is achieved by locating the point of insert and moving the remaining
entries right as before. However, after such an insertion, local pointers must be updated.
One efficient insertion method is to store the tree in the order of a depth first search with
a-branches first. Then, for insertion, follow the algorithm for access and each time an a-
branch is taken, update any corresponding B-pointer. Locating the next higher key requires
keeping a trail during access so that the tree can be traversed to the next goal in the a-
direction with backtracking as necessary.

In allocating time costs to Tree Search we depart from the usual count of key comparisons
by allocating a cost of 8 = 1 to the execution of the B-loop [FFKANL; C]. The cost 8 is
roughly the ratio of the cost of following a pointer to an entry and making a key
comparison with the cost of reading the next entry and making a comparison. We make no
assumption about f except that it is at least 1. We expect that for most implementations we
will have | < # < 2. For the purpose of computing an expected time cost for a Tree Search
strategy, we define the length of a node to be the sum of the arc labels on the path from the
root to the node, with a = 1. The access time for a particular goal node is its length. The
path length of a tree is the sum of the lengths of its goal nodes. Thus the expected access
time is just the path length divided by the size.

Before discussing optimal Tree Search strategies we will analyze an important subfamily:
the family of B-tree Search strategies. These are the strategies whose organization trees can
be viewed as B-trees by grouping maximal a-chains together. We call these strategies B-
tree strategies because they look like B-trees and some of the analysis here will apply to B-
trees of pages, with, e.g., 8 as the expected cost of a page reference. However, these are not
B-trees in the sense that they use a different insertion algorithm and free space is not
distributed. We modify the requirements of B-trees slightly and require that all maximal
a-chains be equal in length (except for the leaf chains), that such chains contain either all
goal nodes or all nongoal nodes, and that the goal chains all be at a uniform depth. The
fixed length of chain will be called the order. A B-tree of order 3 and depth 3 is displayed
in Figure 5. A B-tree of order m and depth d partitions the goal nodes into m?' sections
each to be searched sequentially. Specifying integers m ( = 2) and d (= 1) fixes a unique
strategy with expected random access time approximately

BT o{N) = (d — 1)SE(m) + SE(N/m""") + (d — 1). (3.3)
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Ya a & « a a
O—-0O—e0 O—=0O OO
F1G. 5. B-tree of size 20, order 3, and depth 3

or
BT a(N)=4d - l)Ym = 1)+ J(N/mT) = 1)+ (d - 1)B. 3.49)

This value is slightly lower than what would occur in practice since we assume an exactly
even distribution to the leaf sections while we are not using the balancing properties of the
insertion algorithm for real B-trees, but rather depending on the randomness of inserts for
even distribution. But we will make similar évenness assumptions for the other strategies
so that comparability is preserved.

Besides the evenness assumption, (3.3) and (3.4) involve another approximation, because
actual a-chains must have integer lengths. It is convenient for analysis and comparison to
use these approximate forms, and the results differ by less than one-fourth as is shown in
the following lemma:

LemMa 3.1. If one of a number of sections of length my or mx (me = m, + 1) is to be
searched sequentially and the probability of choosing a section is proportional to its length,
then the difference between the expected search time and SE(m), where m is the average
length, is less than one-fourth.

PrROOF. Assume we have k; sections of length m; and k. sections of length m; =
m; + 1, so that N = kymy + kom; and ki, kz, my = 1. Let E be the expected search time.
Then

E = SE(m\)(kim/N) + SE(m3)(kamz/N),
while
SE(m) = SE(N/(k, + k2)).
Expanding, we have
E = Hkim3/N) + (kum3/N) — 1],
SE(m) = }{(kimy/(ki + k2)) + (kamy/(k) + k2)) — 1],

and
1 kik
E = SE(m) =3 N(ki + ks)
1 ki ks

= 2 (kimy + kama)k, + k2)

1 max(ki, k2) min(k,,k2)<_l

=_. . . g
2 k|"11 + k'_zm;z kl + k;: 4
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B-trees are far from optimal Tree Search organizations. Moreover, their use of relatively
large numbers of redundant index entries makes them a bad choice for search within a
page because the extra space requirement means fewer goal nodes per page. We study B-
trees, and Tree Search strategies in general, more to provide a reference point for
comparison of access times than to provide a serious alternative strategy. The uniform
nature of the B-tree makes it relatively easy to program maintenance routines (insertion,
deletion, etc). One might expect that this uniformity would also lead to optimal access
times, but, as we show below, optimal organization trees are highly unbalanced.

In order to study optimal tree organizations, we use the following notation to facilitate
making precise statements about trees:

i(v): length of node »;
n(t): number of goal nodes in ¢
k(r): number of nongoal nodes in ;
P(1): path length of ¢,
A(r): expected access time of 1 = P(f) + n(1);
opt(f): t is an optimal tree, i.e., Vt'. n(t") = n(t) = P(t") = P(2);

Seasible(N, k): there is an optimal tree with N goal and k nongoal nodes.

It is easy to see that we need only search a finite number of trees to find an optimal tree
of size N. The following lemmas (given without proof) will be useful in describing the
shape of optimal trees. Each can be proved easily by per.nuting nodes and subtrees.

LEMMA 3.2.  Optimal trees have no nodes of type

(i} B t

LEMMA 3.3 In an optimal tree, the B-subtree of every nongoal node must have at least two
goal nodes.

LeMMaA 3.4. In an optimal tree, nongoal nodes cannot be at a greater length than goal
nodes, i.e., Yt. ¥y, in t. Vv in t. opt(t) N\ goal () /\ nongoal (v2) — i) = U(v2).

Lemmas 3.2, 3.3, and 3.4 tell us that the optimal trees for M goal nodes must be
constructed as follows: Consider an infinite binary tree as a skeleton, with each node
having an a and a 8 successor. Fill this tree with k nongoal nodes for some k < N so that
these nodes occupy the positions as close to the root as possible, i.e., positions of minimal
length. Each of the “leaves™ of this tree of nongoal nodes has an « and a 8 successor that
are goal nodes. Additional goal nodes are strung out in a-chains from these initial goal
nodes. The goal nodes are added one by one, each at a minima! length available position.
Ties for minimal length position are resolved arbitrarily for both goal and nongoal nodes.
If we know k, this method will produce all possible optimal trees of size N. The choice of
k need not be unique; see for example Figure 6 where § =5, N =63, and k = 8 or 9. As
another example, for 8 = 3 and N = 117, there are optimal trees for k = 18, 19, ..., 27.
Even for a fixed value of k, there can be several nonisomorphic optimal trees with k
nongoal and N goal nodes (see Figure 6).

The following theorem will provide us with an efficient method for producing optimal
trees. Its proof is somewhat lengthy and cumbersome, so we postpone it to the Appendix
to this paper.

THEOREM 3.1. Increasing the number of goal nodes by 1 either increases by | or leaves
constant the number of nongoal nodes in an optimal tree, i.e., [VN, ki, ko, ka. ki < ky = ks
A feasible (N, ki) N feasible (N, k3) — feasible (N, k3)] N [VN, k. feasible (N, k) —
(feasible (N + 1, k) v feasible (N + 1, k + 1)) N (feasible (N — 1, k) V
feasible (N - 1, k — 1))].

Proor. See the Appendix.

Given an optimal tree with N goal nodes, Theorem 3.1 gives the following procedure for
obtaining an optimal tree with N + | goal nodes: Add a new goal node at a minimal
length available position; compare the path length of this tree with that obtained from it
by changing a minimal length goal node into a nongoal node and redistributing the goal



Search within a Page 463

nodes so as to occupy the minimal length positions; and choose the tree with the smaller
path length.

The next lemmas are proved by comparing the path length of the optimal tree with that
of alternatives (Figure 7). We use them to bound the lengths of a-chains in optimal trees.
(Note that the length of an a-chain is one less than the number of goal nodes in it.)

LEMMA 3.5.  Let c be the length of an a-chain which is an a-subtree of a nongoal node in
an optimal tree. Then

cz=B-3+ V4B + 1.

PrROOF. Assume 1, of Figure 7 is optimal so that P(1;) < P(t;) and |(c + 1) — (d + B)]

= 1. Then
B+d I+¢ N
oo (5 + (1)
=g i=1
and
c+d+1
P)y= Y 1|
=0
so that

P(ty)— P() =dc+1)—Bd+ 1)=0.

k=8 k =
F16. 6. Optimal trees with 8 = 5, N = 63, k = 8 or 9. Average access time = 11. B-arcs are indicated by extra
length
t1 : tzl
« i
b —_—
+ 4
ctdt+ti1=,

IA

Y

|0 i

F1G. 7. Alternative possibilities for a-chains
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Thus
dic+1-pB—-8=0;
but
d=c+2-8,
sO
E+(3—-28)c+p2~-48+2=0.
Ifc<B~3-4va8+ I, thenc<B~-2andd<0.Thusc=f -2+ 4vVag+1. O

2
LeEmMA 3.6. Let d be the length of an a-chain which is a B-subtree of a nongoal node in

an optimal tree. Then
d=—}1+1iv4p + 1.

PrROOF. Assume #, of Figure 7 is optimal, as in the proof of Lemma 3.5, so that
flce+1)—(@d+P)|<landdlc+1—-B8)-—B=0.Thenc+1-B=<d+1,s0

& +d- =0
Thusd= -4 +34v4p+1. O

LemMMA 3.7 Let a be the length of any a-chain of an optimal tree. Then

a<fB+ vapg + 1.

PrOOF. Suppose ¢, of Figure 7 were optimal and a = 8 + V48 + 1. Then c and d could
be chosen witha=c+d+ Isothatc=f8 -3+ V48 + | andd=—} + {V48 + | and
at least one of the inequalities would be strict. Reversing the calculations of Lemmas 3.5
and 3.6, we would have P(1;) < P(12), contradicting the optimality of ;. O

LeEMMA 3.8.  Let t be an optimal tree with at least one nongoal node. Then

) —3(B+2+VaAB+ )< AW < K1) — H(—=1 + V4B + 1).

Proor. The average of the lengths of nodes of an a-chain of ¢ is its greatest length
minus half the length of the chain. For each a-chain this average is greater than /(1) — |
— (8 + V48 + 1) by Lemma 3.7. Thus A(r) must be greater than this number. Similarly
A(t) must be less than or equal to /[(r) — }(—} + $v48 + 1) by Lemmas 3.5and 3.6. O

THEOREM 3.2. Let t be an optimal tree. Then ’

logr(n(D) — B+ 1 < l() < log-(n(1)) — 1 + V4B + 1

where r is the unique positive real root of r® = r#7' + 1.

PrOOF. See the Appendix.

THEOREM 3.3. Let OT(N) be the expected random access time in an optimal tree with N
goal nodes. Then

log/(N) — $(38 + V4B + 1) = OT(N) < log(N)— % + V4B + |

where r? = rf7' + 1.

ProoF. Substitute / from Theorem 3.2 in Lemma 3.8. [

The optimal Tree Search access times give us something to aim at with the other families
of strategies. Before investigating strategies with no redundant entries, we introduce a
subfamily of Tree Search strategies that attempts to approximate the skewness of optimal
trees (viewed as trees of a-chains) while sacrificing very little of the uniformity of B-trees.
We call the organization trees of this family Promotion trees or P-trees because each one
results from applying a modifying procedure called promotion to a B-tree. Promotion is
the process of replacing each node of type

(i) 5 ¢
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by the a-chain to which it points. Figure 8 presents the result of applying promotion to the
B-tree of Figure 5. The size, order, and depth of a P-tree are those of its associated B-tree.
Note that promotion preserves properties (3.1) and (3.2).

THEOREM 3.4. The expected random access time for a P-tree with N goal nodes is
PTmd(N)= BTmd(N) ~ AB, where |A — (d — 1)/m| < (d - Dm?2/N. (We will sometimes
use a form with raised subscripts, as PTm,d(N). in place of the more cumbersome
subscripted form, PT,AN).)

Here we will make another evenness assumption about the distribution of lengths of
promoted a-chains and approximate PT by

PTmd(N) = BTm,d — (d — 1)/m)B. (3.5)
or
PTmd(N) = }(d — 1)(im = 1) + $(N/m*") = 1) + ((d — I)(m — 1)/m)B.  (3.6)

PrOOF OF THEOREM 34. Let ¢t be a B-tree and let p be its corresponding P-tree.
Promotion reduces P(r) by B at m?~? leaf a-chains for each of the d — I nonleaf levels.
Thus,

(d = Dm**|N/m*JB < P(t) — P(p) = (d = Dm"*[N/m*"IB.

Let A = (P(1) — P(p))/NB. Then PTm,d(N) = BTm,d(N) — AB, and
d-1/m—-d-DmTYN<A<({(d—1)/m)+ (d~ Dm*YN. O

We complete this section on Tree Search strategies with a summarizing result whose
proof is immediate:

THEOREM 3.5 Let BT(N) = min{BTm,d(N)} and PT(N) = min{PTm.d(N)}. Then
OT(N) = PT(N) = BT(N).
4. Root Search

The family of Root Search strategies uses the program scheme of Figure 9 and a totally
ordered organization graph with no redundant, nongoal nodes, as in Figure 10. As with B-
trees, Root Search strategies divide the goals evenly into m® ' sections for sequential
search. The correct section is found by the same method as is used with a B-Tree except
that the largest goal node of each appropriate supersection is visited in place rather than
having a copy visited at a higher level. This requires following a local pointer for the
[NEXT AT THIS LEVEL] command. Thus, we charge 8 for the loop [NATL; C].

When d = 2 and m is approximately VN, the strategy is called Square Root Search. We
also refer to the family of Square Root Search strategies for arbitrary m. When d = 3, we
call the family Cube Root Search, etc. Figure 10 is an example of a Cube Root Search
organization graph of size N = 20 and order m = 3. It corresponds to Figures 5 and 8 in
size, order, and depth. The arcs followed by loops [N; C] and [NATL; C} are labeled a and
B, respectively, but we have not labeled the arcs corresponding to loops [FFKANL; C] and

o020

FiG. 8. P-tree of size 20, order 3, and depth 3. The result of applying promotion to the B-tree of Figure 5
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FIND FIRST KEY

COMPARE

} 8

| NEXT AT THIS LEVEL

FIND FIRST KEY AT NEXT LEVEL

FIND FIRST KEY AT LOWEST LEVEL

COMPARE
1 [

NEXT

FiG. 9. Root Search program scheme

F16. 10. Cube Root Scarch organization graph

[FFKALL; C]. Rather than fix a more precise implementation here, we simply postulate
that their costs lie between 1 and 8. Then, with the approximation justified by Lemma 3.1,
we have the following bounds on expected random access time for Root Search:

d— 1+ SE(N/m*™) + (d — 1)SE(m)8 < BRm,d(N)

< SE(N/m®™) + (d — 1)(1 + SE(m))B, (4.1)
or
d— 1+ }(N/m™") = 1) + $(d — 1)(m — )8 < BRm.d(N)

S HN/mTH) =D+ 4d-D(m+ DB (4.2)

For comparison purposes we will use the lower bound, particularly for Square Root Search
where it is probably achievable. We define Best Root Search as the optimal Root Search:

BR(N) = min{BRm,d(N)},
where
BRmd(N)=d — 1+ }(N/m”™") = 1) + }(d — 1)(m — 1)8. (4.3)
We also have SR(N) = min{SRm(N)}, where
SRm(N) = §((N/m) + 1) + $(m — 1)B, 4.4)
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for Square Root Search, and CR(N) = min{CRm(N)}. where
CRm(N) = J(N/m") + 3) + (m — 1B, (4.5)

for Cube Root Search, etc. Note that the minimum value of SRm(N) occurs with m
approximately equal to VN/B (m is of course an integer). Similarly, the minimum value
of CRm(N) occurs with m near *VN/8.

Square Root Search is used for search within a page in VSAM. It is simple to program
and uses very little extra space for pointers. However, for N sufficiently large, Square Root
Search is not the optimal Root Search. Cube Root Search is faster for N = 27. Square
Root Search is generally (for most interesting cases) the slowest of all the strategies we
consider. Thus it depends, for its justification, on the efficient use of space.

Insertion into the Square Root Search organization is extremely simple, since only the
pointer to the highest key in the correct section (a-chain) need be updated (assuming
relative addressing from the previous section).

Although all a-arcs are not filled in in Figure 10, the organization graphs for Root
Search are laid out so that locating the next higher key is achieved by executing a
[NEXT]). In the next section we study a family of strategies designed to run significantly
faster than Root Search strategies while preserving most of their space and order advan-
tages. Since the case m = 2 for Root Search strategies is just an inefficient implementation
of this next family, we assume m = 3 for all Root Search strategies.

S. Binary Search

The family of Binary Search strategies uses the program scheme of Figure 1! and an
organization graph similar to that of Figure 12. Like Root Search, Binary Search strategies
use no redundant nongoal nodes. Binary Search strategies divide the goals as evenly as

FIND FIRST KEY

COMPARE |«

8

| FIND KEY AT NEXT LEVEL

FIND FIRST KEY AT LOWEST LEVEL

\

COMPARE
' ~]
?‘ NEXT

Fig. 11. Binary Search program scheme

B

8
~ ;o%@m \_#O-070

F1G. 12. Binary Search organization graph
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possible into 27 sections for sequential search. The time advantage for Binary Search comes
from eliminating half the remaining candidates for correct section with each key compar-
ison. The analysis is similar to that of Root Search; we charge 8 for the loop [FKANL; C]
and postulate that the cost of [FFKALL; C] is between | and 8 with 1 being used for
comparison purposes. Figure 12 is labeled the same way Figure 10 is: a for arcs followed
by [N]; B for arcs followed by [FKANLY]: and no label for arcs followed by [FFKALL]. It
depicts a Binary Search organization of size N = 20 and depth d = 3.

Following the conventions of the previous sections, we approximate the expected random
access time for Binary Search by

BId(N) = SE(N/29) + 1 + (d - 1)8, (5.1)
or
BId(N) = }((N/2%) + 1) + (d — 1)B. (5.2)

We also define BI(N) = min{BId(N)). Binary Search strategies generally use a little more
space and are a little more complicated than Square Root Search, but they often run
significantly faster. Section 6 contains a detailed comparison.

Insertion for Binary Search organizations can be almost as simple and fast as for Root
Search organizations. One method uses relative displacement pointers as in Square Root
Search and updates a pointer followed only if the direction is reversed on the subsequent
pointer followed. As with Root Search strategies, locating the next higher key requires
merely executing [NEXT]).

The radix partition tree is a binary tree of pointers set up to branch on bit values of the
key rather than key comparisons. Radix partition trees can support the function
NEXT HIGHER KEY by left to right tree traversal (as in B-trees), and they can support
the function IS A PREFIX OF much more rapidly than any of the strategies we have
studied. A study of radix partition tree strategies of [10] or Patrician strategies as presented
in [3] is beyond the scope of this paper. However, under our uniformity assumptions, the
radix partition tree is no faster and can be considerably slower than a full Binary Search
(section size 1), which is in turn no faster than optimal Binary Search.

The next section presents the main results of this paper. It contains a somewhat
exhaustive comparison of expected random access times for all the strategies introduced so
far. We believe that some of the results are unexpected, and that it is not easy to determine
which strategy runs faster by inspecting the formulas.

6. Time Comparison Results

We begin this section with a recapitulation of the approximations to expected random
access time we will use for comparison. We assume N is an integer = 5, m is an integer
2 2, and 4 is an integer = 1. Recall that 8 = 1.

B-tree: BT (N) = min{BTm.d(N)}, where
BTmd(N) = }(d — 1)(m — 1) + }(N/m*™ ") = 1) + (d — DB. 34)
P-tree: PT(N) = min{PTm.d(N}}, where
FTmd(N) = §(d — )(m = 1) + §(N/m™") = 1) + (d — I)m = 1)/m)B.  (3.6)
Best Root: BR(N) = min{BRm,d(N)|m = 3}, where

BRmAN)=d — 1+ (N/mT") — 1)+ Id ~ I)im — 1)8. (4.3)
Square Root: SR(N) = min{SRm(N)|m = 3}, where
SRm(N) = $((N/m) + 1) + 3(m — 1)8. (4.4)

Binary: BI(N) = min{BId(N)}, where
BId(N) = J((N/2)) + 1) + (d — 1)B. (5.2)
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Optimal Tree: log{N) — (38 + V4B + 1) = OT(N) < log(N) — } + {V4B + 1, where

=B 4.

Also recall from Theorem 3.5 OT(N) < PT(N) < BT(N). And note that BR(N) < SR(N).

We postpone the proofs of many of the following results to the appendix:

THEOREM 6.1. BT(N) < BR(N).

PrOOF. BRm,d(N) — BTm,d(N) = (d — 1)(8 — 1)(m — 3)/2, and we have stipulated
m=3for BR. O

THEOREM 6.2. If 8 =1, then PT(N) =< BI(N).

PROOF. PToaei(N) = 4d + §(N/29) — } + }d = BIAN). O

THEOREM 6.3. If B> 1, then for N = 168, PT(N) < BI(N).

ProoF. Assume N = 168. Then

BI(N) — BI(N)=(N/8) — 8=0 and BIXN)— BIj(N)=(N/16)-8=0,
SO
BI(N) = min{BI,(N)|d = 3}.
Now
BIg(N) = PTounx(N) = (3d — 1) (B - 1) >0 for d=3.

Thus BI(N) > PT(N). O
THEOREM 6.4. Forl <B =<3/2and N=8, BI(N) < BT(N).
Proor. See the Appendix.
THEOREM 6.5. For B> 3/2 and N sufficiently large, BT(N) < BI(N).
Proor. See the Appendix.
THEOREM 6.6. For N=8and | < B =< 1/(log,3 — 1) = 1.7095, BI(N) < BR(N).
PrROOF. See the Appendix.
THEOREM 6.7. For B> 1/(log:3 — 1) and N sufficiently large, BR(N) < BI(N).
PrOOF. See the Appendix.
Figures 13 through 18 are graphs of mean access time for small values of N and 8. The
ranges are

10 = N = 500
and
l=sg=<2

Binary Search (BI) is represented by small x characters. The other strategies are represented
by solid lines and always obey the following order:

P-tree (PT) < B-tree (BT) =< Best Root (BR) < Square Root (SR).
For 8 =1, BI = PT and BT = BR.

1. Space

When we are searching pages from a large index, the cost of a page fault may be
significantly greater than the cost of searching a page by any of our proposed strategies.
Thus a strategy which minimizes the number of page references required is generally
preferable. Sometimes packing more index entries onto a page will result in fewer page
references. In this case we may even choose the strategy which requires the least amount
of space—Sequential Search—in spite of its dismal time performance within the page.
When the index entries are of fixed length, then the local pointers of Root Search and
Binary Search strategies can be calculated rather than stored so that they too require no
extra space. However, compression techniques used to pack more entries onto a page
generally result in variable length entries. Thus the final choice of a strategy for search
within the page often lies outside the context of the page and beyond the scope of this

Nt S
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paper. What we do provide here is a comparison of the space requirements of the strategies
so far presented. :

The unit of space will be the average size of an index entry. We let & be the space
required for a local pointer: presumably 0 < 6 < 1. For the nongoal entries of Tree Search
organizations we charge a cost between § and 1. We prefix the names of the access time
functions with S to indicate the space functions. For example,

SSE(N) = N. @a.n

(Note that we do not charge for the space for any pointer to the first key of an organization.)
The formulas we give are merely representative; they do not characterize every possible
implementation of each strategy. For instance, Binary Search might use 2 — 1, 2¢, or
2 + | pointers; we simply choose 2°. If they are calculated rather than stored, the space
cost for each will be § = 0. Thus we have

SBIAN) = N + 2%. (7.2)
We assume that the local pointers are kept in a contiguous part of the page for Root
Search so that we require only m“~" — I local pointers for Best Root. Thus

SBRm,d(N) =N + (m*' - Dé. (7.3)
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B-trees do not use separate local pointers, so we simply bound SBT by
N + ((m? — m)/(m — 1))8 < SBTm, d(N) < N + (m” — m)/(m — 1). (7.4)

P-trees use the same space as B-trees except for the elimination of (m*™* ~ 1)/(m — 1) type
(iii) nodes. Thus we have

N+ (m*' = 1)5§=< SPTm, dN)=N+mo' -1 (7.5)

Inspection of the above expressions shows that if space is very important, the only real
contenders are Square Root Search (Root Search with 4 = 2) and Binary Search. Now
optimal Square Root Search has m close to v/N/B so that the space required for pointers
is roughly (VN/B — 1)é. For optimal Binary Search, we have (see Lemma A4 in Appendix)

N/48 < 27 < N/28,

so that optimal Binary Search would require at least (N/48)8 space for pointers. Thus
optimal Binary Search is not space competitive.

However, some suboptimal depth Binary Search strategy generally competes favorably
for combined time and space. In order to compare strategies simultaneously for time and
space, we use a weighted sum: PERFORMANCE = TIME + SPACE - WEIGHT. Let x
= (WEIGHT - §)/8. Our region of interest is defined by
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0=x=14 (7.6)
IsB8=<2, .7

and
S0< N. (71.8)

Justification of these bounds is beyond the scope of this paper, but we believe they
represent realistic bounds for real applications. Within this region we can make a strong
statement about the dominance of Binary Search.

TueoreM 7.1. For each N, B, and x within the region described by (7.6), (1.7), and (1.8),
and for each m = 3, there is a d such that the PERFORMANCE of Binary Search with depth
d is better than the PERFORMANCE of Square Root Search with m sections.

SKETCH OF PROOF:  Let f(N, B, x. m, d) be the difference between the PERFORMANCE
of Square Root Search with m sections and the PERFORMANCE of Binary Search with
depth d. Then

S(N, B, x, m. d) = }N((1/m) = (1/2D) + B(4(m — 1) = (d = 1)) + Bx(m — 1 - 2%).
We will show that YN, 8, x, m. 3d. AN, B, x, m,d) > 0.
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First we write f = g — h where
g(N, B, x, m) = (N/2m) + (Bm/2) + Bxm,
and
h(N, B, x, d) = (N/2**") + B(d — }) + Bx(1 + 29).

It is easy to show that g = VNB(1 + 2x). Solving VNB(l + 2x) > h for N, we get
L(N, B, x,d) < N < H(N, B, x, d) where

L(N, B, x, d) = Bl4 + Bx — 29! JC + Dx — 27253,

H(N, B, x, d) = B4 + Bx + 2% VC + Dx ~ 277,
A= 22d+l — 2d+l (d_ %)‘
B = 22d+l - 2d+l
C= 22d_2d+1 (d— %)‘
D= 22d+1 - 2d+2d.
We can show ford = 3, H(N, 8, x,d) > L(N, 8, x,d + 1), and L(N. B, x, 3) < 258 = 50.
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Thus some d = 3 makes /> 0 for N = 50. This completes the proof sketch. O

It is an extremely rare case when even doubling the pointer space required causes a
significant change in any performance factor. To cause an increase in the number of page
references per access in a B-tree of pages, N must have been very close to an integer power
of the page size. Thus we can argue that Binary Search is preferable.

When space is not important, the competing strategies are Binary Search and P-tree
(assuming B < 3/2 as in Theorem 6.4). Unless B is fairly large we expect that the complexity
of programming the implementation of the P-tree will outweigh its slight time advantage,
and again Binary Search will be preferable.

When space is important but 8 = 0 because of fixed length index entries, Binary Search
is far superior to the other strategies unless 8 is large. Notice that we must qualify all
recommendations with a reference to 8. In general we suggest using Binary Search but
checking 8 to make sure it is small.

The following section is an Appendix in which we present the detailed and complex
proofs from Sections 3 and 6.

Appendix
This Appendix contains the details of proofs we felt would interfere with the reading of




Search within a Page 475

35

MEAN ACCESS TIME

BETA = 2.0
FiG. 18. PT< BT =< BR=< SR & PT=< Bl <BR

the paper if included in the body. First we derive various bounds on the behavior of BT,
BI, and BR.

For each integer m = 2 we define BTm(N) = min{BTm, d(N)|d = 1, m*™' < N} so that
BT(N) = min{BTm(N)|m = 2}.

LemMMma Al. BT.(N) = BTna(N) where d = [logm((m — DN/(m — 1 + 28)1.

PROOF: Let

Sf(x) = BTnsss(N) = BT (N)
=B+ ¥m—1) = (m = HN/2m")

for integers x = 1. Then f(x) = 0 iff m* = (m — 1)N/(m — | + 2B). Thus BT, 4(N) attains
its minimal value at d = [log.((m — )N/(m — 1 + 28))]. O
LeMMA A2. LBT,(N) =< BT.(N)< HBT.(N) where

1 Ninm 1 1
LBTA(N) =5 (m — 1 +26) (Iog,,, (m s 2/8) . m) -

and

L. (m — DN 1)1
HBTA(N) =5 (m l+2,8)<log,,.<m_l+2ﬁ>+m_l> 3




476 H. R. STRONG, G. MARKOWSKY, AND A. K. CHANDRA
Proor: By Lemma Al,
BT(N)= BTpa(N).
where
d = logn (%) +6 and O=é<l.
Substituting d in (3.4) yields

m—1+28 m-—1 2

Letg)=6—1+m"/(m—1). Theng'(9) =1~ m'~®1In m/(m~ 1), g'(0) <0, and g'(1)
> 0. Thus a straightforward analysis shows that g attains its maximum at 6 =0 and its
minimum at m® = m In m/(m — 1), and

loga(In m/(m—=1)) + 1/In m= g@ =1/(m-1). (A2)

Substituting (A2) in (A1) provides the upper and lower bounds of the lemma. a
LemMa A3. For N= 6,1 < B <3/2, and all integers m with2 < m < N, LBT.(N) =
min{LBT(N), LBT(N), LBT5(N)).
ProoF: Let f(m) = LBT.(N). We can write

_ 1-8
BT,..(N)=%(m-— 1 +28) (log.,, (M_) +6-1 +-—m———) —l. (Al)

f'(m) = A(m)D(m)/2 In m, (A3)
where
Am)=1—(m—1+2B)/(m In m). (A4)
and
D(m) = In(N In m) — In(m — 1 + 28). (AS)

The hypotheses of the lemma yield
Am)<0 for 2=m=3,
A(m)>0 for S<=m=N,
and
Dim)>0 for 2=m=<N.

Thus f(m) = min{ f(3), f4), f(5)}. O

LemMa Ad. If N = 4B, BI(N) = BI(N) = N/4 + 1/2. If N > 4B, BI(N) = BI«(N)
where d = [logo(N/B)] — 2.

PROOF: Bl4i(N) — BI4(N) = B — N/2%*%. If N < 4B, then Blan(N) = BI4«(N) for all
d = 1.If N > 4B, then BI,(N) is least at the first point where 2> = N/B. O

LemMa AS. For N >4,

B log(N/B) + } + Blogs(2 In 2) + 1/In 2 = 3) =< BI(N) < B logs(N/B) + } — B.

ProoF: By Lemma A4, BI(N) = BI4(N) where d = loga(N/B) + 6 — 2and0<f<1.

Substituting d in (5.2) yields

BI(N) = B logz(N/B) + % + Bgl8), (A6)
where
g®=2"+6-3.
Now g'(6) = 1 — 2'""In 2, 50 a straightforward analysis shows that g attains its maximum

at 8 = 0 and its minimum at 2° =2 In 2. Thus
log2(2 In )+ 1/In 2 -3 = g6 = -1 (AT)
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Substituting (A7) in (A6) provides the upper and lower bounds of the lemma. [J
THEOREM 64. Forl=<fB=<3/2and N =8, BI(N)< BT(N).
Proor: Note that since N = 8 and 8 < 3/2, N > 48. We will show that

LBT.(N)= B logAN/B)+4%—B. for m=234.5,

from which our result follows by Lemmas A2, A3, and AS. [
We define h(m, 8, N) = LBT,(N) — (B log2(N/B) + 1/2 — B). Thus

1 N I
h(m, B, N) = 5(m = 1 + 2§) (log,,. <m A l"+'”2 B) + )

)

_ m—l+2ﬂ__,8_ _ .
_(lﬂN)(‘—m— ln2>+(m 1 +28)
In(ln m) + 1 —In(m — 1 +28) In B8
( T )—1+B+BE—5. (A8)

The derivative of (A8) with respect to 8 is
( 1 l)_ln(m—l+2,3)—ln(lnm)—l

BN =n M)

8 Inm In2 In m
I 1 In B8
- _ A9
mm ' Th2tmz Y
Differentiating (A9) with respect to g yields
&h m-1+28Inm-—281n 2
eyl y P = AIO
@B ™ AN = T S = T+ B (A19)
Since this second derivative is positive for m = 2, 8 > 1, and since
oh
B (m 1,e") >0 for m=3,4,5,

we have
%(m, B.e>0 for m=34,5
and | <8 =<3/2 Thus
min{h(m, B, N){m =3,4,5, 1 < =3/2, N=¢'%)
= min{h(m, 1, e"®)|m =3, 4,5} > 0.
The coefficient of In N is positive for m = 2 and | < B =< 3/2,s0 h(m, 8, N) > 0O for
m=3,45 1=8=<3/2,and N=8>¢'" 0O

THEOREM 6.5. For 8> 3/2 and N sufficiently large, BT(N) < BI(N).
ProoF: By Lemma A2,

BT(N) = BT(N) < HBT(N) = 1 (3 + B)log:N + ¢,
where ¢, does not depend on N. By Lemma AS,
BI(N) = B log:N + ¢,

where ¢; does not depend on N. Since 8 > 3/2, 8 > (1/2)(3/2 + B), so BI(N) > BT(N)
for sufficiently large N. O
For each integer m = 3, we define

BR.(N) = min{BRm, d(N)|d integer = 1, m*' < N}.
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LEMMA A6. Form =3, BR,(N) = BR,4(N) where

a2 N(im — 1) )]
=\ 2+ Bm -1

Proor: The proof is similar to Lemma Al. [
LemMMa A7. LBRn(N) < BR.(N) =< HBRn(N) where

1 N In m 1 1
LBRn(N) =5(2 + B(m — 1)) (logm <2 + B(m — 1)) + In m) 2

and

1 (m— )N 1 1
HBR,(N)==(Q2 + -1 - + -,
(N) 2( Bm - 1)) (Iog (2 + B(m - l)) m— 1) 2
Proof: The proof is similar to Lemma A2. O
LemMMa A8. For integersm = 3, 1 < 8 =< 1/(log23 — 1) = 1.7095, and integers N=
max{m, 6}, LBR,,(N) = min{LBRy(N), LBR4«(N)}. '
ProOF: We can write the derivative of LBR,(N) with respect to m as

3LBRA(N) ]
T(m,ﬂ, N)—mA(m, B, N)-D(m, B), (A1D)
where
Nlnm
A(m, B, N) =In (m)
and

Dim,B)=Bmln m—m+ 1) -2

A straightforward analysis of 4 and D shows that Am,B. N)>0form=3, B <171,

N = max{m, 6}, and that D(m, 8) > 0 for m = 4, B = 1. Thus (All) is positive for

mz=4, =171, N = max{m, 6}, so that LBR,(N) = LBR(N)form=4. U
THEOREM 6.6. For N=8and 1 < B = 1/(log:3 — 1) = 1.7095, BI(N) < BR(N).
Proor: Note that since N = 8 and 8 < 1.71, N > 4. We will show that

LBR.(N)= B logAN/B)+1/2 - for m=3,4

from which our result follows by Lemmas A5, A7, and A8.
We define

h(m, B, N) = LBR(N) - (8 logo(N/B) + 4 — B).

A straightforward analysis of

ah 1.8
"a_B (m’ B’ € )

shows that h(3, B, €'®) > 0 and h(4, B, ¢'®) > 0 for | = 8 < 1.71. (Note that ¢'® = 6.05
< 8.) Also, it is easy to show that

dh oh
hodd . = 3.8
aN(4'B N)>6N( B. N)
and that
oh .
Thus for N=¢'* m=3,4, and | = 8 < 1/(log:3 — 1), h(m, B, N)>0. O
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THEOREM 6.7. For B> 1/(log:3 — 1) and N sufficiently large. BR(N) < BI(N).
Proofr: By Lemma A7, BR(N) = BR3y(N) < HBRy(N) = (1 + BlogsN + ¢, where ¢,
does not depend on N. By Lemma AS, BI(N) = B log:N + ¢, where ¢, does not depend
on N. Since 8 > 1/(logz3 — 1), (1 + B)/log:3 > B. Hence for sufficiently large N, BR(N)
< BI(N). O
Next we turn our attention to the details of the study of optimal trees in Section 3. We
begin this study with further definitions and notation:
Kt): maximum length of tree ¢ ((z) = max{/(v)|v in ¢} unless ¢ is empty, in which
case /(1) = —x);
K{(1): the tree of nongoal nodes in ¢ (containing exactly those nongoal nodes in ¢
connected to the root via a path of only nongoal nodes);
Sorm(t): t is formed by assigning k(1) nongoal nodes to minimal length positions and
then assigning n(r) goal nodes to minimal length available positions;
P(N): path length of an optimal tree with N goal nodes (P(N) = min{P(t)|n(¢)
= N}).
The next three lemmas are offered without proof. They provide a review of the
definitions and lemmas of Section 3 dealing with optimal trees:
LeEMMA A9. opi(t) <> form(t) N feasible(n(t), k(t)).
LeMMA AL0.  form(n) A form(t:) A n(th) = n(t2) A k(1) = k(12) —
I(6) = I1z) N KK(1)) = U(K(12)) N P(1,) = P(t2).
LemMa ALl opt(t) = I(t) = (K@) + B+ L.
LemMa AL2. form(n) A form(s2) A n(t)) = n{ta) A k() < k(t) N Itz) > UK(t2)) + B
= 1) = Ke). :
PrOOF: Assume the hypotheses and, without loss of generality, assume K{(t,) is a subset
- of K(t;) (if not, then there is a length preserving transformation of ; with the property).
If goal(v) in 1, but v is not a node of #, then ;) = (») = Kt,) and we are done. Thus
assume goal(v) in t; — v in t,. We can now set up a 1-1 correspondence f between the goal
nodes of #; and goal nodes of 1, satisfying:
(a) goal(») in ty \ goal(v) in t; — f(¥) = v, and
(b) goal(v) in t) \ nongoal(v) in t; — f(») is a minimal length goal node of sta(v).
Property (b) can be satisfied because stz(») is empty in #, but must contain a goal node in
1y since I(t;) > I(K(12)) + B. Then

K12) = max{/(f(»))|goal(») in t;}
and
goal(v) in 1, — either I(f(v)) = v} < ) or I(f(»)) < (K(t2)) + B < Ut2).

Thus I(2) < (1;). O

LEMMA Al3. k; = k2 A feasible(N, ki) N\ feasible(N + 1, k2) — feasible(N, k2) N
Seasible(N + 1, ky).

Proor: Suppose #; and ¢, are optimal trees with N and N + | goal nodes and &, and
k2 (ki > k2) nongoal nodes, respectively. Let 15 be the tree formed by adding one goal
node to ¢, at a minimal length position so that form(t;). Then Kt3) = K1) = (K(1)) + B+
1 = I(K(13)) + B + 1 > I(K(t3)) + B (by Lemma All), and hence (by Lemma A12), /ts)
=< 1([2).

Let ¢, be the tree obtained from ¢, by deleting one maximal length leaf. We have P(1,)
— Ktz2) = P(13) = P(1,). Thus

P(13) = P(1)) + (1) = P(t3) — Kt3) + K12) = P(1a)
and ;3 is optimal. Also
P(ts) = P(tr2) — l12) = P(13) — t3) = P(1y)

sO /4 is optimal. (J
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LEMMA Al4. ko= k) + 2 N\ feasible(N, k)) N feasible(N + 1, k;) — feasible(N. k) + 1)
A feasible(N + 1, k, — 1).
PrOOF: Let 1, and ¢ be trees fulfilling the hypotheses:
Opl(h) AN Opl(h) Ant)=NAk)=kiANnt) =N+ 1NKk(t) =kaNko=k, + 2.
We construct trees ¢, and ¢ and establish that they fulfill the conclusion:
op(t) N opt(ts) A n() = NAN k() = ki + Y An(ts) = N+ 1L A k() = ks — L.

Let ¢, be obtained from 1, by changing a minimal length goal node », into a nongoal
node, adding one goal node s(»), and rearranging goal nodes so that form(t;). This
rearranging is accomplished by moving r additional goals into stg(»;) from maximal length
positions where r = [/(t2) — i) — B). Let dy = P(t2) — P(1). Then

)+ (r— D)= B+ rlm) + B) + r(r + 1)/2 — a..

Let 13 be obtained from 1, by adding a goal node at a minimal length position. If /()
= I(»n) + B + 1, then l(13) < I(1;), since r = 1.

Let #; be obtained from 1, by changing a maximal length nongoal node »; into a goal
node and redistributing r’ = [/(t;) — l(v2) — B] goal nodes so that form(ts). (We assume
without loss of generality that the maximum length node of stg(2) has length > /(1) — 1.)

Note that " = 1 since v, is a nongoal node of .. Let d> = P(t5) — P(t4).
Let ¢ be obtained by eliminating one maximal length goal node from ;. Then

) + (r' = DUte) = B+ r'(Kwe) + B) + r'(r' + 1)/2 + d.
Also
Sorm(ts) A Ite) > U K(t)) + B
so, by Lemma A12, Kts) < lt2). Hence K1) = t5) < I(z2). Since (v2) = I(»1), we have
)= ) = Hp) + B+ 1= Hp) + B+ 1.

Thus {t5) = K1,). By Lemma A12, K1) < l(t3). Note also r = »".
We can now rewrite our previous results as
r'+ 1
re+

3 (r=r)

—dy = ) = ln) + (r" = D(1z) = i) — B) — 28 -

r+r +1
~<1(12) —in) -8B ——_2““)

‘r'+1
r'(r )+

3 (r=r)

= lts) — Uve) + (r' — DU(te) = Uv2) — B) = 2B —

-(1(:» i) - B - i’;)

, r+r' +1
2d2+(f—")(1(12)"1(1’1)"/3"—2—)
r+r' +1
2

But d, = 0 and d: = 0. Thus d, = d: = 0 and 1, and 1; are optimal. []

THeOREM 3.1 Increasing the number of goal nodes by | either increases by 1 or leaves
constant the number of nongoal nodes in an optimal tree.

Proor: The proof is immediate from Lemmas A13 and Al4. [

=>d, sincer=r+1-olL)—-ln)-B=
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Finally we develop the machinery for a proof of Theorem 3.2. For the rest of this
Appendix, x ranges over the set Dg = {a + bf|a, b nonnegative integers). Let

p(x) = max{N|3t-opt(t) & N = n(t) & I(1) < x}.
Let
g(x) = min{N|3r.0pt(t) & N = n(1) & I(1) = x}.
Let z; be any increasing function on Dj such that where defined
2i(x)=z:(x — 1) + zi(x — B). (Al2)
and
z(x)zx+ 1 for 0= x, xan integer. (Al3)
Let z; be any increasing function on Djg such that where defined
22(x) = z2(x — 1) + 22(x — B), (Al4)
and

x)=x+1 for 0=sx<fB+ VaB + L. (A1S)

LEMMA A5, p(x) = zi(x) for x in Dg and g(x) = z4(x) for x in Ds.

Proor: The proof is by straightforward induction on x. O

Let 7 be the unique positive solution to r# = 7! 4 |.

LemMa Al6. zi(x) = r**#7! satisfies (A12) and (A13) and zy(x) = r*1=V4+T satisfies
(Al4) and (A15).

PrOOF: Any function z of the form z(x) = r*** (where w is a constant) satisfies both
(A12) and (A14). Thus we need only show that z; satisfies (A13) and z, satisfies (A15).

Now 2i(0) =rf'> 1, 2;(1) = rf = %' + 1> 2, and z:(x + 1) = z1(x) = r¥*# — px*8-1
=r*"' = | for x = 1. Thus, by induction, z;(x) = x + 1 for nonnegative integers.

Let f(x) = x + 1 — z5(x). A straightforward analysis of the derivative of f with respect
to x shows that, if f(0) = 0 and f(8 + V48 + 1) = 0, then f(x)>0for0<x< g+
V4B + 1. But (A15) is equivalent to f(x) = 0 for 0 < x < 8 + V48 + . Thus we need only
show f(0) = 0 and f(B8 + V48+1) = 0. Now f(0) = 1 — r="*1 > ¢ and
JB+VAB+ 1) =B+ V4B + 1 +1—r " Letg() =8+ V4B + 1 + | — r**' where B
is considered a function of r. It will be sufficient to show that g(r) = 0 in the range of r
corresponding to 8 = 1.

By the definition of r, we can expand r**' to r + r®, to r + 1 + r*~, and by induction
tor+ 1+ (r— 17" orr*/(r — 1). Thus we can write 8 = 1 — (In(r — 1))/In r, showing
incidentally that | <r =<2 for 8 = 1. Let 8’(r) be the derivative of 8 with respect to 7. Then
B <—{(ln Nr—1)""<0forl <r<2. Let g'(r) be the derivative of g with respect to
r.-Then g’ (N < B+ Hr—-2)/(r— 1)’ <0forl <r<2 But g(2) =vS5 — 2> 0. Thus
g(r) > 0 for 1 < r =< 2. This completes the proof of the lemma. [J

THEOREM 3.2. Let t be an optimal tree. Then

log,(n(t)) — B+ 1 < K1) < log(n()) — 1 + V4B + 1,

where r is the unique positive real root of r® = r®7' + 1.
ProOF: Lemmas Al5 and A16 show that p(x) < r***~! for x in D, and that g(x) =
r= 1"V for x in Dy, By definition, g(i(r)) = n() < p(X1)). Thus

rl(n+l—\/w+l < "(1) < rl(lHB—l,

from which the theorem follows by taking logs and rearranging. (]
This theorem completes our Appendix.
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