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Syndrome-Testability Can be Achieved by Circuit Modification
GEORGE MARKOWSKY

Abstract—In [1] and 2] Savir developed many facets of syndrome-testing
(checking the number of minterms realized by a circuit against the number
realized by a fault-free version of that circuit) and presented evidence showing
that syndrome-testing can be used in many practical circuits to detect all single
faults. In some cases, where syndrome-testing did not detect all single stuck-
at-faults, Savir showed that by the addition of a small number of additional
“control” inputs and gates one would get a function which is syndrome-testable
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for all single stuck-at faults, and yet which realizes the original function when
the “control” inputs are fed appropriate values. However, he left open the
question of whether one could always modify a circuit to achieve syndromc-
testability. In this correspondence we show that a combinatorial circuit can
always be modified to produce a single-fault, syndrome-testable circuit.

Index Terms—Circuit modification, stuck-at-faults, syndrome testabi-
lity.

Syndrome testing offers the possibility of simple and thorough
testing of circuits and even the possibility of self-testing. Unfortu-
nately, a circuit need not be syndrome-testable. Savir [1], {2] showed
that many circuits of “practical” interest arc cither syndrome-testable
or can be made syndrome-testable by the addition of a small number
of additional control lines. This correspondence shows that a circuit
can always be made syndrome-testable by adding “enough™ control
lines. Since there does not exist a handy and useful characterization
of circuits of “practical” interest, the approach used here is based on
no particular property of the circuit being analyzed, and consequently
it is not surprising that the technique we use to prove the main results
is not of practical interest. The chief point of this correspondence is
to demonstrate that syndrome-testability can always be achieved. It
is my hope that knowledge of this fact will spur people to analyzc
further the problem of modifying “practical” circuits to achieve
syndrome-testability. The reader is urged to consult Savir’s papers
for basic information on syndrome.

Definition: Let xy, -+, x, be Boolean variables and F"a Boolean
function in some subset of these variables. Let K be the number of
assignments of values to the variables which give F the value of 1.
Then the syndrome of F, S(F) is defined to be the quantity K /2.
Finally, the cosyndrome of F, C(F) is defined to be the quantity 1 —
S(F). O

Fig. 1 is a schematic representation of an OR gate in a typical
combinatorial circuit. Fig. 2 shows how it can be modified by adding
additional AND gates and various numbers of additional control
variables. For a4 NOR gate, it is clear that the solution would be the
same as for the OR gate since the syndrome of NOR circuit is simply
the cosyndrome of the corresponding OR circuit. For AND and NAND
circuits we use additional OR gates, rather than AND gates.

Theorem 1. The procedure described above can always be tailored
so that the circuit (of Fig. 2) ending at OUT is single-fault syn-
drome-testable assuming that cach of the circuits ending at the /; are
single-fault syndrome-testable.

Proof: The remarks made above show that the result for the OR
case would imply the result for the NOR casc. Furthermore, by sub-
stituting cosyndrome for syndrome in the argument below one gets
the result in the AND case and hence the NAND case. Thus, we only
give the proof in the OR case, i.c., the case of Figs. 1 and 2.

Let B;(*B;) denote the function realized by the circuits feeding line
1;(*1;} and let B/(*B/) denote the same circuit having a single fault
fsomewhere in it. It is also reasonable to assume B, == 0, I toavoid
discussing trivialities. Let B(*B) denote the function realized at OUT
in Fig. 1 (2) and B/(*B/) the function which results from a single fault
fsomewhere in it.

Let 6 = max {6;}, where §; is the number of variables which cven-
tually feed into line /;. Finally, let ky < ko <--- < k,, be chosen so
that 2~ ki+8) > 10m2~k+1. For consistency let ko = 0.

The proof is inductive in nature and begins by noticing that simple
gates are syndrome-testable. Next, we observe that any single stuck-ut
fault in OUT or any */, is syndrome-testable. By induction we assumi
that S(B{) = S(B;) for all single faults occurring in the circuit feeding
1;. Tt immediately follows that S(*B]) = S(*B;) for all single faults
occurring in the circuit feeding */;, since cither the fault occurs in 5;,
whence S(*BY) = S(B/)/2%i and S(*B;) = S(B;)/2%, or the fault
occurs in some ¢;; or */; and either S(*BN =0,10rS(B;)/2%~", while
S(*B;) = S(B))/2% = 0, 1.

In order to prove that S(*B) S(*B) for all f we proceed as
follows. Let i be such that *B{ = *B, for | < i <iq, but *B == *B, .
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Fig. 1. A schematic representation of part of a combinational circuit.
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Fig. 2. A circuit modified to ensure syndrome testability.

Since at most k;, + & lines feed li, we must have |S(*B/) — S(*8;,)]|
2 2~ (*io+4) because the syndromes of these two subcircuits have
denominators <2~ (kio+® and numerators which differ by at least 1.
We consider two cases as follows.

1) S(*Bf) = S(*Biy) + 2~kio+®). In this case since the syndrome
of a disjunction of circuits is not greater than the sum of the syn-
dromes of the subcircuits

S(*B) = S(V *B)) + S(*B,,)

i<ip

+S(V *B;) < S(4) + S(*B;,) + m2~kio+:
i>ip

where 4 =V *B;, since for i > i, S(*B;) < 2-ki < 2—kio+1,
i<ip

However, m2~kio+1 < (1/10)2=(kio+8) because of the way we selected

the k;.

Conversely, S(*B/) > S(4) + S(*Bf)) — S(AA*BL), since the
quantity on the right-hand side is exactly the syndrome of S(A4V*BY),
and is ba_sed on the fact that the number of elements in the union of
two sets is the sum of the number of elements in each set minus the
number in their intersection,

Now we use the fact that the syndrome of a disjunction of circuits

is not greater than the sum of the syndromes of the circuits to ob-
tain

S(AN*BL) < 3% S(*B; A*BL) < m2~kig—(kio—1)
i=1

< (1/5)2tkio+),

The fact that each S(*B; A*BL) < 2~ki2—(kio—1) < 2—k12~(kig=1)
follows since f'is a single fault, we have at least k; + k;, independent
control lines and & is the smallest of the k;’s. Note that we used the
fact that f was a single-fault to observe that at most one of the control
lines ¢;4y, -+ -, Ciokyq 18 stuck-at 1 (a control line stuck-at 0 is equivalent
toa */; stuck-at 0). Thus, we have S(*B) < S(A)+S(*B;) + (1/
10)2=Kio+d, but S(*B/) = S(A4) + S(*B,,) + (4/5)2~kio*+5), Thus,
S(*Bf) = S(*B).

2) S(*Big) = S(*B/) + 2~ io+5)- I this case arguing as above
we get that

S(*B) 2 S(4) + S(*BL) + (9/10)2—kio+d)

and

S(*B/) < S(A) + S(*Bf)) + m2~(kior1-1y
S 8(A) + S(*BL) + (1/5)2~(kig+8)

where we use the fact that f'is a single-fault to conclude that S(*B)
< 27%i=D_Thus, again S(*B/) = S(*B). D

The above proof actually proves a lot more than Theorem 1. This
stronger result is given in Theorem 2.

Theorem 2: The procedure of Theorem 1 produces a circuit with
the following properties:

1) if f and g are single faults such that for some i, S(*B)) s
S(*Bf), then S(*Bf) = S(*Bg);

2) if f is any multiple fault involving only the /; and any lines
feeding the /; such that for some i, S(B/) = S(B;), then S(*Bf) =
S(*B).

Proof: Both 1) and 2) above are proved essentially the same way
that Theorem 1 is proved. For 1) we pick /o minimal with the property
that S(*Bf) = S(*B#%)). As before, these two values must differ by
at least 2= (kio+%) and the rest of the argument in Theorem 1 goes
through essentially unchanged (1/10 and 9/10 become 1/5and 4/5,
respectively). For 2) the argument is similar since all the bounds in
Theorem 1 are based on the number of control lines and we only use
the fact that S(BY) is between 1 and 0, which is true regardless of
whether f is a single or multiple fault. Indeed, the only time we use
the assumption that f is a single fault is in limiting its effect on the
control lines. O

Theorem 2 shows that we have a limited ability to diagnose single
faults and detect multiple faults. Diagnosing all single faults is not
something one would expect from syndrome testing since one cannot
do it for simple V and A gates. In particular, the modifications de-
scribed above will not produce circuits in which every single fault is
syndrome diagnosable. Diagnosing multiple faults is also not feasible
for two additional reasons: 1) the large amount of storage necessary
to store the syndrome values for each multiple fault defeats the whole
purpose of syndrome testing; 2) in modifying a circuit by adding
control lines to achieve a syndrome-testable design there is always
a multiple fault in the control lines which yields the original non-
syndrome-testable circuit.

The question of multiple fault detection is not fully resolved. The
above argument will handle multiple faults that are not “too bad,”
i.e., where the number of faults allowed is bounded by a suitable
function of the number of lines. To detect all multiple faults would
seem to require an even more complicated analysis and more control
lines. For this reason we have chosen not to pursue this problem fur-
ther.
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