996 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 12, DECEMBER 1981

The Weighted Syndrome Sums Approach to VLSI Testing

ZEEV BARZILAI, JACOB SAVIR, GEORGE
MARKOWSKY, AND MERLIN G. SMITH

Abstract—With the advent of VLSI, testing has become one of the most
costly, complicated, and time consuming problems. The method of syndrome-
testing is applicable toward VLSI testing since it does not require test generation
and fault simulation. [t can also be considered as a vehicle for self-testing. In
order to employ syndrome-testing in VLSI, we electronically partition the chip

. into macros in test mode. The macros are then syndrome tested in sequence.

In this paper we show the means to syndrome-test macros. We examine the
size of the syndrome driver counter and establish a method of determining its
minimal length. The problem of minimizing the number of syndrome references
needed for testing is also investigated. It is shown that it is always possible to
use one weighted syndrome sum as reference for each and every macro. The
question of weighted sum syndrome-testability is addressed and methods to
achieve it are discussed. A self-test architecture based on these concepts is
described.

Index Terms—Partitioning, self-testing, syndrome-testable design, syn-
drome-testing.

I. INTRODUCTION

In recent years considerable attention has been given to LSI/VLSI
testing and testable design. Digital circuit manufacturers are well
aware today of the need to design testability fixtures early in the de-
sign stage, or otherwise they will have to pay a higher testing bill later
in the process. Using traditional testing schemes for VLSI requires
high test generation and fault simulation times. New techniques are
required.

Syndrome-testing [2], [4]-[6] is a step to achieve this goal. The
notion of syndrome-testing is based on counting the number of ones
realized by a Boolean function and comparing it to the fault-free
count. Since there may be circuits and faults for which these fault-free
and faulty syndromes are the same, modifications to produce a test-
able design are generally required. The syndrome-testable design,
thus ensures that all the faulty syndromes will differ from the fault-
free one by adding a small amount of 1/0 and logic. In a VLSI en-
vironment the chip is electronically partitioned into macros, in test
mode, in order to reduce the overall test time.

In this paper we assume that the chip has been designed according
to the Level Sensitive Scan Design (LSSD) [1] rules. From a testing
standpoint it means that, basically, the testing problem has been re-
duced to testing the combinational circuitry between Shift Register
Latches (SRL). Thus this task of testing the combinational logic can
be accomplished by means of syndrome-testing.

In this paper we investigate a cost effective scheme for VLSI
testing. Our proposal is to use syndrome-testing to test each and every
macro of the chip. In Section 11 we consider the problem of parallel
syndrome-testing of all functions involved in a macro. In Section 11
we determine the minimum counter size necessary to drive a multi-
input-multioutput macro, where all macro outputs are tested in
parallel. In Section IV we investigate ways to further reduce the
number of references needed for testing by using weighted syndrome
sums. The weighted syndrome sums approach has a natural appeal
to self-testing because of the enormous test data savings that it may
offer. The question of untestability with regard to weighted sums is
then addressed, and some ways to overcome it are presented. Section
V presents the self-test architecture. The paper concludes with a brief
summary.

Manuscript received November 21, 1980; revised June 4, 1981.
The authors are with IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598.

II. SYNDROME-TESTING OF MULTIPLE OUTPUT CIRCUITS

Since the notion of syndrome-testing requires the application of
all possible input combinations to the Circuit Under Test (CUT), a
VLSI is partitioned to limit the test time to some acceptable level.
Thus, assume that the VLSI chip has been partitioned into R macros
(syndrome partitions), where each macro is a multiinput-multioutput
digital circuit. Usually, short test times will mean smaller macros and,
therefore, more macros, while longer test times will usually result in
larger and fewer macros. It is important to note that there are
tradeoffs between macro sizes, test times, and partitioning penalties,
i.e., extra hardware and 1/0O pins. Fig. 1(a) describes the partitioning
of the chip into macros, and Fig. 1(b) illustrates schematically a
typical macro.

When we go to syndrome-test the chip we must make sure that all
macros are tested properly. Those macros which have disjoint sets
of inputs can always be tested in parallel. In the other cases where the
macros are interconnected a sequential syndrome test procedure may
be used.

The question arises as to how one should syndrome-test a given
macro. If we separately syndrome-test each output function involved
in the macro, this will require the repetition of the syndrome-test
procedure as many times as there are output functions in the macro.
This can be a very time-consuming process because of the multiplicity
of the syndrome-test runs. Another way to achieve this same purpose
is to try to syndrome-test all the output functions in parallel, namely,
to use only one syndrome-test procedure exercising the totality of the
macro inputs and obtaining all output syndromes in one pass. The
following theorem shows that by using the method of parallel syn-
drome-testing, the true syndromes are recorded at the outputs of the
macro.

Theorem 1: Let y; = f(x1, Xiz, "+, XiK;), § = 1,2, ++, m be the
output functions realized by the macro. Let p be the length of the
counter which drives the input combinations to the macro,p = k; ¥
i. Then by running a syndrome-test procedure which exercises all 27
possible combinations of the counter, the true syndrome appears at
each output y;.

Proof: Let M; be the number of minterms in the function y;, i
=1,2,--+, m. Then, by definition the syndrome realized by output
y; is given by

M;
S = F
Let the inputs x;1, x;2, - - -, X, be connected to the bits b;1, b5, - -,

bix, of the counter. When the counter steps through all its possible
input combinations each vector ¥ = (x;1, X2," * -, X;x,) is applied 27~
times. Thus, the normalized ones’ count appearing at the output y;
is given by

20kiM; M, o
_ZF——;-—Si’ 1—1,2,.,m

which is the correct syndrome. Q.E.D.

III. THE SYNDRQME DRIVER COUNTER SIZE

One of the key questions regarding parallel syndrome-testing of
multiinput-multioutput macros is the minimum size of the input
counter which drives the exhaustive test vectors, called the Syndrome
Driver Counter (SDC). The length of the SDC falls within the range
described by the following theorem.

Theorem 2: The length of the SDC L is bounded by

max {k;} < L <n, i=1,2,-,m
!
where k; is the number of inputs feeding the output function y;, and
n is the total number of inputs to the macro.
Proof: Since there are n input lines to the macro, the length of

0018-9340/81/1200-0996%00.75 © 198! IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 12, DECEMBER 1981 997

PRIMARY

PRIMARY
INPUTS

(a)

Y
Q; 4 Treical Fv}
xy—_ MAcRO Yp
ouTPUTS

(b)

Fig. 1. (a) A VLSI chip partitioned into macros. (b) A typical macro
with n inputs and m outputs.

the SDC is bounded from above by n. Also, since the SDC must be
capable of driving each and every output function, it is clear that its
length is bounded from below by max {k;}. Q.ED.

Note that both the lower bound and the upper bound are attainable.
The lower bound, for example, is attainable in the case where all the
input sets driving the output functions are disjoint, while the upper
bound is attainable when one of the output functions is dependent
upon all input variables.

It is of utmost importance to be able to determine the minimal size
of the SDC because it has a direct effect on the test time required to
syndrome-test the macro. Let the minimal size SDC be g. Let, also,
the bits of the SDC be denoted by b, by, -, by.

The problem of determining the minimal size SDC is, therefore,
the problem of constructing a function G:{xy, x2," " - , X4} — {b1, b2,

* o, bg} where G(x;) = b; if and only if there is a direct connection
between input x; and bit counter b;, and certain relationships (dis-
cussed below) between the x;’s are taken into account. Note that G
is a surjection or an onto mapping.

Definition 1: An input pair (x;, x;) is said to be adjacent if there
exists at least one output function y;, i = 1, 2, - -, m which depends
on both x; and x;.

In order to minimize the size of the SDC it is necessary to connect
as many input lines to the same counter bit. A pair of input lines may
be connected to the same counter bit if and only if they are not adja-
cent. We next show a constructive method of finding the function
G.

Definition 2: A pair of inputs (x;, x;) is said to be nonadjacent if
they are not adjacent.

We use the nonadjacency (NA) graph to create the function G.
The NA graph is defined to have # vertices, designated by xy, x3," "+,
Xn to correspond to the n input lines. There is an arc between node
x; and node x; if and only if the pair (x;, x;) is nonadjacent. By ana-
lyzing the NA graph it is possible to identify a maximal class of inputs
that can be connected to the same counter bit. From the definition
of the NA graph it is evident that the input lines x;1, X2, " - * , Xjx can
be connected to the same counter bit if they form a clique, i.e., the
subgraph induced by x;1, x5, - - -, x is a complete graph.

Each clique in the NA graph defines a collection of inputs that can
be connected to a single counter bit. Our objective is, therefore, to find
all possible maximal cliques and then go through a prime-impli-
cant-like covering procedure [3] to determine the minimum set of
such cliques that cover all possible inputs. Each maximal clique ob-
tained in the minimal cover will correspond to one bit counter. Thus
the number of maximal cliques appearing in the minimal cover de-
termine the minimal size of the SDC. Unfortunately, this problem
is well known to be NP-complete and there is no known algorithm for
solving it that is efficient in all cases. In many practical cases, though,
it is possible to get good answers efficiently.

The function G is established in the following way. Let the set of
maximal cliques appearing in the minimal cover be

IMCIMC; = {xi1, xi2, -, xig)

The bit counters are then defined by referring each such MC to a
different bit, namely,

MC; = b;, i=1,2,-,4.

4-04

i=1,2-,q}

Note that in general the cliques are not disjoint. In particular, suppose
input x; is included in several cliques, i.e.,

Xi € {Mle‘ Mcjz, Ty, Mlel
then there are / choices for defining G(x;), namely,
G (x;) = by, r=1,2,---,1.

Note, therefore, that there are multiple G functions possible, all of
them leading to the same minimum counter size.

Example 1: Consider an eight input, five output macro, whose
output functions are given by

yi = filx1, x2, x3, x4)
Y2 = faxs, x7, X8)

V3 = f3(x3, x4, x5, X¢)
Ya = fa(xs, x5, x6, X7)
Vs = f5(x1, x4, X7, X3g).

According to Theorem 2, we can already identify the range of the
SDC length

4<L =<8

To determine the minimum size SDC ¢ we next create the NA
graph (Fig. 2). The set of MC’s for the graph of Fig. 2 is

{{Xz, xs, xg}, bxy, xs), {xq, xe}, {x2, x6), Ix2, x3}, {x3, xg}, {xa)).

Operating a minimal covering procedure on these sets yields three
possible covers

Ay =y, x5, xs), 1, xe6d, {x2, X7}, {3, xg}, (x4}
Ay = {x), x5}, fxz, xel, x2, X9}, fx3, x8), {xal}
Az ={lxy, x5}, bxy, xel, {x2, X7}, {x3, xs}, {xa}}.

Note that the minimal size SDC for this example is 5. Note also that
the set 4; defines 4 possible G functions, as opposed to sets 4, and
A3 which each define 2 functions.

Using the set A4, the two possible G functions are

Gi(x1) = Gi(xs) = by Gx1) = Ga(xs) = b,

Gi(x2) = Gy(xg) = by Ga(xg) = b
Gi(x7) = by or Gy(x2) = Gy(x7) = b3
Gi(x3) = Gi(xg) = by Ga(x3) = Galxg) = by
G(x4) = bs Gax4) = bs
where
. {x1, x5} = by

{x2, x6} = b
fx2, x7} < b3
{x3, x8} < by

{x4} = bs.

The connection between the minimal size SDC and the macro inputs,
as defined by the function Gy, is shown in Fig. 3.

1V. THE WEIGHTED SYNDROME SUMS

In Section II we have shown that it is possible to syndrome-test a
multiinput-multioutput macro in one test procedure. A brute force
implementation of this parallel syndrome-testing is to use m refer-
ences one for each output syndrome. In a VLSI environment this may
mean tens or hundreds of syndrome reference words. Since this trend
in increasing density is expected to grow in the future, it may be at-
tractive to try to reduce the number of references. Furthermore, one
of the major alternatives to VLSI testing is to use a built-in test. This

998 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 12, DECEMBER 1981

Xg X,
Xy Xp
Xs X3
[J
Xs X4

Fig. 2. The NA graph for Example 1.

ol
. X2 Al
X3 Yob—=
& X4 v
&) Xs “
B —d T Xe
.: X7 Yo
X8
soC

Fig.3. The connection diagram between the SDC and the macro inputs
as implied by the function G ;.

reduction in the number of output references makes the notion of
syndrome-testing a very attractive approach to self-testing because
it reduces the area overhead needed for implementation.

In this section we show a method of combining output syndromes
in such a way as to reduce dramatically the number of references
needed for syndrome-testing.

Let § = (§), S2, -+, S,) be a vector representing the output
syndromes of the macro. Let also the function

m
g= Zl wiZ;
=
be a linear combination of the variables Z, - - -, Z,,, with coefficients
Wi, W2, " **, Wy, where w; is an integer,i = 1,2, -+, m.
Definition 3: A weighted syndrome sum, (WSS), for an m-output
macro with coefficients w;, i = 1, 2, - -, m is defined as
WSS = g(S).

Our intention is to use as references one or more WSS’s instead of
the complete collection of output syndromes. From here on we assume
that each output function has been designed to be syndrome-testable
[4], [5]. It is important to note that when using WSS’s as references,
as opposed to a complete collection of output syndromes, there may
be undetectable faults, in the sense of the following definition.

Definition 4: Let the faulty syndromes induced by a fault f be de-
noted by S7,i =1,2,--+, m. Letalso AS = § — S/ Then the fault
fis said to be weighted sum syndrome untestable (WSSU) if

g(AS) = f w;AS; = 0.
i=1

The following example demonstrates the concept of WSSU.
Example 2: Consider the circuit of Fig. 4. Suppose we use only one
weighted sum with coefficients 2 and 3, namely let

g = 27+ 32Z,.

Let input line x3 be stuck at zero. Then the fault-free and faulty
syndromes of the outputs are

5 1

S, == §f=21

=76 S173

3 1

Sy== Sf=-

2=3 A 5

Thus

3 1
AS, = > =1
157 A52=-%

Fig. 4. The circuit for Example 2; the fault x3/0is WSSU.

and, therefore,
g(AS) = 2AS, + 3AS; = 0.

According to Definition 4 the fault x3/0 is WSSU.

We would like to emphasize that as long as all coefficients are
nonzero a fault which affects only one output function can never yield
a WSSU condition, since every such fault will change the corre-
sponding syndrome and therefore change the WSS. The choice of
coefficients for a WSS is very important. In fact, the following the-
orem shows that we can always find coefficients for a WSS such that
every single fault is WSS-testable.

Theorem 3: Suppose we are given a macro with output lines y;, - - -,
Ym and that line y; is fed by k; > 1 input lines. Then the WSS, with
coefficients

i‘kj)'f-i
w; = 2=

detects all single faults. .
Proof: We need only show that if some AS; = 0, then Zl w; AS;

= 0. Let i, = max {i| AS; = 0}. Note that |AS;,| = 2~kio
(£ 1)+
|W,'AS,'I = 24

for all i <i, and AS; = 0 for all i > i,. Thus

m (‘.Elkj)'i'l'o
| Z] W,'AS," > |W,'0AS,'0| - <z IW,’AS," =2 =
= i<ic i
-2 2(,§ kj)+'> 0.
i<ip
Q.E.D.

Note that Theorem 3 is not all that useful since the coefficients are
so large, which forces us to store larger numbers. Indeed, the storage
requirements are roughly the same as if we were to store the syndrome
values for each output line individually. The point of Theorem 3 is
to show that we can always get by with one WSS if necessary. Thus
the WSS approach is no worse than simply storing the individual
syndrome values. The benefit of the WSS approach is that often we
can find a small number (ideally one) of WSS’s with small coeffi-
cients which work for a given circuit. Below we discuss two approaches
which can be used to find economical WSS schemes in many practical
cases. Both cases depend on knowing something about the macro’s
structure. As noted earlier, if there is no overlap of various input lines
any WSS having all its coefficients nonzero will get the job done.
Theorem 4 generalizes this approach.
Theorem 4: If we pick r WSS’s, defined by the weighted sums

n
gi=21wiij, i=l,~--,r
j=
such that any r X r submatrix selected from the matrix W =

[Wijli=1, - ry=1,-.m is nonsingular, then a fault may be WSSU only
if it affects at least r + 1 outputs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 12, DECEMBER 1981 999

Proof: A fault f will be WSSU if

fw,-jASj=0, l.=1,2“",l'.

j=1

We have to prove that at least r + 1 AS;’s are nonzero in the solution
space. Or, if we express it differently, we have to prove that at most
m-r-1 AS;’s are zeros in the solution space (excluding the trivial so-
lution which corresponds to the fault-free condition). The argument
goes as follows. Assume that there are m-r + k-1, k > 1, AS;’s which
are zero. By substituting zeros for those AS’s we are left with a ho-
mogeneous system of r equations in + 1-k unknowns. Since all the
columns of the matrix W are linearly independent because of the way
we have chosen the coefficients w;;, the rank of the matrix associated
with the above homogeneous system is 7 + 1-k. Therefore, the solution
for this homogeneous system is the trivial solution. This means that
the only way we might have more than m-r-1 AS;'s which are zeros
is by having a trivial solution which we have excluded. Q.E.D.

Corollary 1: A fault f may be WSSU only if it affects a line in an
r + 1th degree overlap of the circuitry feeding the macro outputs,

Proof: Directly from Theorem 4.

It is very important to mention that both Theorem 4 and Corollary
1 refer to a necessary but not sufficient condition for a fault to be
WSSU. Theorem 4 describes mathematical conditions for which an
WSSU may exist. However, it is not guaranteed that a pattern of
faulty syndromes occurring in the mathematical solution will in fact
physically exist in the circuit. Thus it is very likely that most of the
faults that may occur in the r + Ith degrec overlap will end up being
weighted sum syndrome-testable. Another approach is based on the
number of different values which can occur as syndrome values at
cach output of the macro. The details are spelled out in Theorem
5.

Theorem 5: Suppose we are given a macro with output lines y;,- - -,
Ym such that d; different syndrome values can appear at y; as the
result of a single fault or normal operation. There exists a set of 7
WSS’s having n bit coefficients which detect all single faults if

n
I[Id<2m+1.
i=

More generally, such a set exists if the number of different AS’s is
<2,

Proof: If we allow our coefficients to have n bits, we have a
choice of 277 different WSS’s. Given r of these WSS’s we wish them
to have the property that for each AS, some j =1, -+, r has the
property that g;(AS) = 0. Altogether we have 277 different systems
of r WSS’s having n-bit coefficients. Of these at most 27(m— 1) have
the property that g;(AS) = 0foralli = 1,---, m. To see this, note
that since some AS;, 5 0, once we specify the coefficients wj,, 1 »
iy, there is at most one choice for wiji, (there may not be any since we
are dealing with integers). Observe that there can be at most

m

Od -1

i=1

different AS’s. Thus the number of inadequate systems is at most
(14 - 1)2n<m~'>r.
, i=
As long as this number is <27 je.,
m
IIdi<2m+1
i=1

there must be at least one adequate system. The more general state-
ment follows in the same way. Q.E.D.

Note that Theorem 5 does not furnish an efficient way to find an
adequate system. Also, the upper bound is not the tightest possible,
but it does give some idea of what can be done. In general, there may
not be

d—1

[jant

different AS’s since the values are not necessarily independent. There
is a rough estimate which might be used to estimate d; based on the
following observation. Given n inputs, there are 22" different functions
but only 27 different syndrome values. Thus if a circuit has f different
single faults, one could estimate the number of different syndrome
values by log, (f).

Example 3. Fig. 5 illustrates a binary to two’s complement con-
version circuit with eight inputs and six outputs. Consider the
weighted sum defined by

5
g= Z 2i2[.
i=0
Table I displays the output syndromes and the corresponding values
of the weighted syndrome sums for all single faults that may affect
two or more outputs. We denote by #/0 line & stuck-at 0, and by b/1
line b stuck-at 1. There are 45 rows in Table | corresponding to the
fault-free case and all relevant faulty cases. The first six columns of
the table correspond to all output lines, while the last column refers
to the value of the weighted sum. Each entry of the table in the first
six columns represents the corresponding syndrome value, while the
entries in the last column display the value of weighted syndrome sum.
As seen from Table | none of the faulty weighted syndrome sums are
identical to the fault-free one, and thus the circuit is not WSSU.

Example 4 demonstrates a WSSU case and suggests possible
modifications to produce a weighted sum syndrome testable cir-
cuit.

Example 4: Fig. 6 describes a 4-input-4-output circuit. Suppose
we choose two weighted sums defined by

3
g1 =X 2z
i=0

3 .
g2= 3 23z,
i=0

From the previous discussion we know that the potential WSSU faults
must lie in a third degree overlap between the output functions. Thus.
the only candidates for consideration are lines x;and xj.

The candidate WSSU faults yield the following weighted syndrome
sums:

Fault-free case WSS, =25 WSS, =4.25
x/0 WSS, =25 WSS, =4.25
x/1 WSS, =25 WSS, =4.25
x3/0 WSS, =3.0 WSS, =2.25
X3/1 WSS] =20 WSSZ =6.25

Thus the faults x,/0 and x,/1 are WSSU.

In order to correct for this untestable condition we modify one of
the functions in which x, is involved. In this example we decide to add
an extra input to the AND gate realizing Y,. This will correct the
WSSU condition as evidenced by the following results:

Fault-free case WSS, = 2.375 WSS, =3.25
xl/O WSS| =25 WSSZ =4.25
x/1 WSS, =2.25 WSS, =2.25

If we check the weighted syndrome sums induced by x3/0and x3/1
we may find that these faults are still testable under the above mod-
ification.

Note that if we are using a WSS for a given macro, adding extra
inputs and AND gates are essentially equivalent to dividing the ap-
propriate coefficient of the WSS by a power of 2.

V. THE SYNDROME SELF-TEST ARCHITECTURE

Fig. 7illustrates the fundamental architecture of a chip in self-test
mode. The chip has been partitioned to R syndrome partitions. We
assume that each syndrome partition has LSSD chains on both inputs
and outputs. The Syndrome Driver Counters (SDC) are a simple
modification of input SRL chains. These SDC’s work as regular
SRL’s in functional mode and as pure counters (or as linear feedback

1000

Yo
X0—
X1 —51
Gl{ 2 (]
G3,
Xg D -
Gy (G5 Yo
Gy Sio| (Gn
X3 T\ -
Gy| 5a Y3
Go G| |63
X ?D sngl
Ya
Gia| (Gys
Xs
Y5
8C

Fig. 5. A binary to two’s complement conversion circuit.

TABLE 1
THE SYNDROMES AND WEIGHTED SYNDROME SUMS OF VARIOUS
FAULTS IN THE CIRCUIT OF FIG. §

Hommmmeeean Homdrmcan dmmmman Hmmmeen dommmanne dmmmmamaa e +
| 11 i | | 1 | {WEIGHTED|
| 1Yo Y| v2 | v3 | v4 | Y5 || suM |
4ememaean S Fomaan Hmmmmaen P Hmmmmaaan Hmmmeeean +
JFAULT FREE|.5).4375].40875] 484375 .4921875(.49609375|| 30.875 |
| X0/0 |.0].375 |.4375 |.46875 | 484375 |.4921875 || 29.75 |
I X071 q1.s o |Ls 1.5 1.5 1.5 1l 32.0 |
| X100 1.5].25 |.4375 |.46875 |.484375 |.4921875 || 30.0 |
I X1/t).s).625 s |.5 |.s 1.5 t 3195 |
I X2/0].5].6375].375 | 46875 |.484375 [.4921875 || 30.125 |
| X2/1 |.5t.4375{.5625 |.5 1.5 |.s 11 31.625 |
1 X3/0 1.5].4375| .468751.4375 | 484375 |.4921875 (| 30.25 |
I X3/L }.5].4375].46875(.53125 .5 1.5 Il 315t
| Xe/0|.5].4375| . 46875|.4B4375] 46875 |.4921875 || 30.375 |
I N&s1 | .S1.4375].46875].484375].515625 |.5 |1 31.375 |
I B0 |-5[.25).25 .25 [.25 |25 Il 16.0 |
| B/t 15| .e25 [.6875 |.71875 |.734375 |.7421875 {| 45.75 |
| €/0 [.51.25 |.25 |.25 |.25 {25 il 160 |
I € /1 151,625 |65 | 71875 |.734375 |. 7621875 || 45.75 |
I G170 |.5].4375).4375 1.40875 | 484375 |.4921875 || 30.375 |
| 61/t }.5].4375(.5 I.s |.s |5 ©131.375
I G2/0 1.51.4375|.4375 | 46875 |.4B437S |.4921875 || 30.375 |
| 62/1 |.5{.4375].5 1.5 |.s 1.5 131375 |
I 63/0 1.50.43751.375 | 4375 |.46875 |.484375 || 29.375 |
I G371 fosi <375 1.5 i.5 I.5 I} 31.375 §
I G4/ 1.5]1.4375] 40b75(. 46875 | 464375 |.4921875 || 30.5 |
| G4/l [.5].4375].46875].5 |.5 1.5 1 3125 |
I 65/0].51.4375] 46B75]| 4375 | 46875 |[.484375 || 29.75 |
I G3/1 }.5(.4375{.46875).5 [|.5 Il 31.25 |
| Go/0 }.5].4375|.40875(.375 |.4375 |.46875 || 28.25 |
| G671 |.5].4375(.46875].5 I.5 |5 It 3125
I GI/0].5].4375] 40875 . «84375| . 4B4375 |.4921875 || 30.625 |
l. G7/1 |.5|.4375].46875|.484375].5 1.5 1 31.125 |
| G8/0 1.5].4375|.46875).484375].4375 |.46875 || 29.125 |
| 68/1 |.5[.4375}.40675].484375.5 |.5 Il 31125 |
| 6970 {.5].4375(.46675].484375(.375 |.4375 1} 27,125
I 69/1 |.5] 4375]|.46875].484375].5 1.5 1l 31.125 |
| 61070].51.25 |.25 | .484375].4921875].49609375](29.625 |
I G10/1 1.5].625 |.6875 |.484375].4921875}.49609375(| 32.125 |
I G110 |.S1.25 [.25].4B6375|.4921875|.49609375|| 29.625 |
I GII/1].5].625 |.6875 |.484375|.4921875).49609375 || 32.125 |
| Gl2/0 |.5}.25 |.25 .25 | .4921875).49609375(| 27.75 |
I B12/1).5{.625 |.6875 |.71875 |.4921875|.49609375|| 34.0 |
G13/0 [.5].25 .25 .25 }.4921875].49609375]	27.75					
GI3/1	.5].625	.6875	.71875	.4921875].49609375		34.0
G14/0	.5).25	.25	.25	.25 1.49609375]] 23.875		
Gl4/1].5(.625	.6875	.71875	.4921875].49609375}]			
6G15/0 [.5[.25 {.25 .25 f.25	.49609375])					
GI5/1	.5].625	.6875	.71875	.4921875	.49609375]	
Hemmeameaan D $mmman $ommmean Hmmmeeean R R R T +

shift registers) in test mode. The SDC’s are responsible for exercising
the syndrome partitions by going through all possible combina-
tions.

The multiplexer (MUX) selects one out of R syndrome partitions
by connecting all its outputs to the syndrome measurement circuitry.
Thus, the syndrome partitions are tested in sequence. If 7; is the time
needed for testing the ith syndrome partition

R
2T
i=1
is the total test time. The syndrome measurement circuitry depends
on which testing approach is being used. The inputs to the measure-
ment circuitry are the outputs of the syndrome partition currently
under test. It provides as output the actual syndromes to be compared
with the references stored in the Read Only Storage (ROS). The
comparator compares the output of the syndrome measurement cir-
cuitry to the reference stored in the ROS. A fault indication bit is
turned on if a discrepancy is observed. For the weighted syndrome

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-30, NO. 12, DECEMBER 1981

X
Al
X2] Y
2
Xe !

ot o] —

Fig. 6. An example which is WSSU for the functions defined in Example 4.

©O~PRPOVITON

uLt
CONTROL {NDICATION

Fig. 7.

The fundamental architecture for self-test.

TO COMPARATOR

Fig. 8. Syndrome measurement circuitry for the weighted syndrome
sums scheme

sums approach, with coefficients which are powers of 2, namely w;
= 2/, the syndrome measurement circuitry is composed of an adder
and a register (Fig. 8). If an upper bound to the number of inputs
(outputs) to the syndrome partitions is n(m), then the lengths of both
the adder and the register is n + m. The weighting coefficients are
implemented by connecting the MUX outputs to the proper adder
inputs.

VI. SUMMARY AND CONCLUSIONS

The use of weighted syndrome sums in VLSI testing has been in-
vestigated in this paper. The design for weighted sum syndrome tes-
tability require partitioning into macros and selecting either one or
several weighted syndrome sums for test reference. Thus the number
of references needed for test implementation is roughly proportional
to the number of macros. This low storage requirement has a natural
application in self-test systems based on syndrome measurements.

REFERENCES

[1] E.B.Eichelberger and T. W. Williams, “A logic design structure for LSI
testability,” in Proc. 14th Annu. Design Automation Conf., pp. 462-468,
June 1977.

[2] G. Markowsky, “Syndrome testability can be achieved by circuit modi-
fication,” IEEE Trans. Comput., vol. C-30, pp. 604-606, Aug. 1981.

[3] E.J. McCluskey, Introduction to the Theory of Switching Circuits, New
York: McGraw-Hill, 1965.

[4] J. Savir, “Syndrome-testable design of combinational circuits,” in Proc.
9th Int. Symp. on Fault-Tolerant Computing, pp. 137-140, June
1979.

[5] , “Syndrome-testable design of combinational circuits,” IEEE
Trans. Comput., vol. C-29, pp. 442-451, June 1980; also see IEEE Trans.
Comput., vol. C-29, pp. 1012-1013, Nov. 1980.

» “Syndrome-testing of ‘syndrome-untestable’ combinational cir-

cuits,” IEEE Trans. Comput., vol. C-30, pp. 606-608, Aug. 1981.

(6]

