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Summary. Given a set, S, of Boolean n-vectors, one can choose k of the n
coordinate positions and consider the set of k-vectors which results by
keeping only the designated k positions of each vector, ie., from k-project-
ing S. In this paper, we study the question of finding sets § as small as
possible such that every k-projection of S yields all the 2% possible k-
vectors. We solve this problem constructively and almost optimally for
k=2 and all n. For k=3, the constructive solutions we describe are much
larger than an O(k 2% logn) nonconstructive upper bound which we derive.
The nonconstructive approach allows us to generate fairly small sets S
which have a very high probability of having the surjective k-projection

property.

§ 1. Introduction

In this section we introduce the notation used throughout, and give a very
simple solution for k=2 and all n, having 2[logn]+2 vectors. The second
section presents an improved solution for the k=2 case and some very tight
upper and lower bounds. Section3 describes constructive solutions for k=3,
but the number of vectors required seems excessively large. The final section
presents a nonconstructive approach to this problem which demonstrates that
the sizes of the solutions in Sect. 3 are excessive.

Notation

a) Let B, denote the set of all Boolean n-vectors.

b) For integers nxk, let {n;k} denote the set of all k-subsets of the set
n={1,2,...,n}. If X is a set, {X; k} shall denote the set of all k-subsets of X.
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¢) For Ae{n;k}, let I1,, denote the projection of B, onto B, in the coordinates
designated by 4, ie., if A={a,<a,<...<q,} and v=(v,,...,v,)€B,, then I1,(v)
=(Ug,, -, 0,,). If X B, then IT (X)={I ,(v)]veX}.

d) For any set X, 2¥ will denote its power set.

e) Throughout the paper, log shall denote logarithm base 2.

f) We will use Bin(m; p) to denote the binomial coefficient “m choose p”.

g) For any xeB,, and yeB,, x*yeB,,,, is defined as the m+n dimensional
vector constructed by concatenating x with y.

h) For any set TS B,. T@®T is defined as the set {y|y=x*x where xeT}.

i) For any pair of sets SeB,, and TeB,, S*T is defined as the set {{|{=x*y
where xe8§ and veT}.

We say that any set SS B, has the k surjective projection property if for all
Ae{n; k}, IT ,(S)=B,. Where k is clear from the context, we shall simply speak
about the surjective projection property. The problem we would like to solve
is: given n=k, find the smallest integer s=f(n, k), such that 3S< B, having the
k surjective projection property with |S{=s.

At this point it might be helpful to present a very simple solution for the
k=2 case. Let S consist of the following vectors:

a) the vector of all zeroes;

b) the vectors which are the rows of the matrix results from writing the
integers from O to n— 1 in binary notation as columns;

c) the complementary (in B,) vectors to those in a) and b) above.

Before proving that this solution works for k=2, we illustrate what it looks
like for n=5 in Fig. 1.

0 0 0 0 0
1 0 0 0 0
0 l 1 0 0
0 1 0 | 0
1 1 1 1 1
0 1 1 1 1
t 0 0 | 1
1 0 1 0 1
Fig. 1

Note that in general the number of vectors required by the construction is
2[logn]+2.

Pick Ae{n;2}. Suppose A={i<j}. Since S contains the zero-vector and its
complement, (0,0).(1, 1)elT ((S). Since integers written (in step (b) above) in
columns 1i,j are distinct, they must differ at same bit position. Let v be the
vector of § which records the values of that bit position. For example, if i=1
and j=3, either the second row or the third row in Fig.1 could be used. In
general, IT ,(v) will be either (1,0) or (0, 1). Since S contains the complement of
v, IT (S)=B,. .
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Finally, note that S produced above is within a factor of about 2 of the
smallest possible set. Let T be any set of vectors {v,,...,v,} having the
surjective projection property. Define @: {1,...,n}—2T by @(i)={j|the i-th
coordinate of v; is 1}. Since T has the surjective projection property, @ is
injective. Thus 2°=n and t=[logn]. Thus f(n, k) =[logn].

§ 2. Improved Solution for k=2

Let n(s)=max{n}|f(n,2)<s}. Thus n(s) is the maximum n for which there is a
set of s n-vectors having the 2-surjective projection property.

Theorem 2.1
n(2s)=1Bin(2s; s)=Bin(2s—1; s—1)
Bin(2s; s—1)=n(2s+1)<{Bin(2s+1;s).

Before proving the theorem we need a definition and a lemma.

For §={3,,9,,...,9,} B, with vectors 3, =(9,,,...,9,,) written as rows,
the corresponding set of columns is denoted Col(S)={x,,x,, ..., x,} = B, where
X =35, 935 -5 95

Lemma 2.2. Let §={39,,...,9,}<B,, Col(S)={x,,...,x,}, and X; denote the
complement of x;, then S satisfies the 2 surjective projection property iff i+j
implies x;+x;, x;+X;, and {x, ..., x,, X, ..., X,} is an antichain in the lattice B.

Proof. Sufficiency. Suppose {x,,...,X,} is an antichain, where x,=(3,,,..., %)
Now let i<j<n, and show that I1; ;(S)=B, as follows: since {x;,x;} is an
gntichain, there are p,g<s s.t. 9,,=0, 9,,=1, §,,=1, §,,=0; also since {x;, X;}
is an antichain, there are r,t<ss.t. 3,,=0, 3,,=0, 9,,=1, §,,=1.

Necessity. If § satisfies the 2 surjective projection property, all columns are
distinct and no column is the complement of another. Let i<j<n and show
that {x,-,xj,fi,ij} is an antichain as follows: there are p,q,r,t<s such that 3,
=0, 9,,=1, 9,,=1, 9,,=0 (ie. {x;, %}, {x;,%;}, {x;,x;}, {X;, X;} are antichains),
and 9,;=0, 9,;=0, 9,,=1, 9,,=1 (ie. {x;, X;}, {X;, x;} are antichains). [J

Proof of Theorem. Upper Bound. By Sperner’s Lemma [1; p. 99], the largest size
of any antichain in B, is Bin(z; [¢/2]). By Lemma 2.2, 2n(s) does not exceed
the size of a maximal size antichain in B, thereby giving the upper bound
n(2s)<iBin(2s+1;5), n2s+ )<L Bin(2s+1; s).

Lower Bound. Let S be such that Col(S)={(b,,b,,...,b)|b,=0, Tb,=[s/2]}. If

Col(S) is denoted {x,,...,x,} then it is clear that {x,,...,x,}n{X,,...,%}=0
and. {x;,....x,}, {X,...,%,} are antichains. Also if i<j<n, {x,X;} is an anti-
chain, because if x;=(b,,...,b,), x;=(cy,...,¢y), then b =0, ¢, =1, and as
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Ib;=Xc, there is a p such that b,=1, ¢,=0. This proves that
{xy,....%,,%,,...,%,} is an antichain, and by the lemma, S has the 2 surjective
projection property. Hence n(s)2Bin(s—1;[s/2]) which is the lower bound
in the theorem. [

Theorem 2.1 shows that
f(n,2)=logn+3loglogn+0(1),

and the lower bound for n(s) gives a constructive solution (upper bound) for
f(n,2) which is within 1 of optimal. The table gives lower and upper bounds
on n(s), and f(n,2). For example, 5< f(5,2) <6 (for this special case, it can be
shown that f(5,2)=6), and an optimal solution is obtained as follows: write
columns consisting of three O's and three 1’s, starting with 0 (compare with
Fig. 1). Adding additional columns gives 6 row solutions for f(n, 2) with n<10.

0 0 0 0 0

0 0 0 0 1

0 | 1 1 0

1 0 1 | 0

1 1 0 | 1

1 1 1 0 1
Fig.2

Conjecture. The lower bound for n(2s+1) in Theorem 2.1 is tight.
It has been shown [5] that the lower bound for n(2s+1) in Theorem 2.1 is
indeed tight.

§ 3. Constructive Solutions for k=3

In this section, we shall give a deterministic algorithm to construct a set
M(n, k)< B, with the k surjective projection property. For every nz1, k=1 and
n=k, we will first construct an M(N,k) where N=2"®" M(n k) is then
constructed from M(N, k) by setting M(n, k)=mn ,(M(N, k)) where Ae{N; n}.

Algorithm M

Input: Two integers n and k

Output: A set M(n, k)< B, with the k surjective projection property.
1. Set j=[logn].

2. Set M(2°, 1)={(0), (1)}, M(2°,2)=¢, M(2°3)=¢,..., M(2°, k)= 4.
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3. Fori=0,1,2,...,j—1 perform 4.
4. Fore=1,2,... k, set
: . . e_l .
M2 e)=M(2, @M (2, e)u U M2, 0* M2, e~2).
=1
5. 8et A={1,2,...,n}.
6. Set M(n, ky=mn,(M(2, k)).

We now establish the following two lemmas.

Lemma 3.1. M(n, k) has the k surjective projection property, for all nz1, k=1
and n>k. T

Proof. 1t is sufficient to show that M(2°¢™ k) produced by Algorithm M has
the k surjective projection property, for all n>1, k=1 and n=k. We shall give
a proof by induction on j=[logn]. For j=0, M(2° 1)={(0), (1)} which clearly
has the k surjective projection property. Assume J=0,1,...,h, M(2/, k) has the
k surjective projection property for all k=1,2, 3, .., 20, For j=h+1, consider
any Ae{2"*1; e} where ee{1,2, ..., k}. Let A,={iliec4 and i<2*}, A,=4—A

and £=|A4,|. There are three cases. R 1

Casel. £=0.

By the construction in step4 of Algorithm M, we have M(2"+! ¢)> k
’ ,e)2M(2°,
®M(2", e). Therefore, ( )2M(2% €)

m M2 e)2n,[M(2" D M(2" ¢)]
=n,,M(2", )

=B,.
Case 2. {=e.

Following the same argument as in Case 1, we have

ma M2 ) 2m, [M(2", )@ M(2", )]
=m, M(2" ¢

=B,.
Case 3. O0</(<e.

In this case, by the construction in step4 of i
\ p4 of Algorithm M, we ha
M(2"*+1 e)2 M(2", /)* M(2" e —¢). Hence v
M2 ey [M(2", £)* M2, e—7/)]
=n, M(2" ()* n,, M(2" e—¢)
=B,.

Th.erefore, we have shown that in all three cases, n, M(2"*! ¢)2B,. The
proof is thus completed. [ , ‘

In the following lemma, we give an upper bound for the size of M (n, k).
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Lemma 3.2. f(n, k) <|M(n, k) <2*[logn}*~!, for all n22, k21.

Proof. We shall prove this lemma by induction on j=.[log n]. Notice that we
cons>ider the cases where n=2 to avoid the trivial situation when n=1 and
[logn]=0. For j=[log2]=1, from Algorithm M, we have M(2,1)={(0,0),
(1, 1)}, M(2,2)={(0,0), (0, 1),(1,0), (1, 1)}, M(2, N=¢p, M2, H)=¢,..., M2, k)=¢.
It is easy to check that |M(2,k)<2log27~! for all kgl.. Assume
IM (n, k)| <2*[logn]“~! for all k=1 and for all j=1,2,...,h For j=[logn]
=h+1, we have, for all e=1,2, ..., k,

IM(n, &) SIM(2** 1, e)|
e-1
<IMQP, o)+ Y IMQ2", ) x IM(2", e~ )|
‘=1

e—1
§2“h2"1+ Z 2lhl—1 x2(e—l)he7(—1
=1

___zehe—1+(e_1)2ehe—2
=22(heal+(e__1) he—Z)
éze(h'i—l)eAl.

Therefore the lemma is true for j=[logn]=h+1. The proof is thus
completed. O

These recursive solutions can be further improved. For doing this we
modify step 4 of Algorithm M. First we observe that for e=3 one can have

M2+, 3)= M2, )@ M2, 3)u M2, 2@ M2’ 2)

where M(n, k) is the set obtained from M(n, k) by exchangir_lg 0’s and 1’s, a_nq
where T@®T, for a set TS B,, is defined as the set {yly=x* X where x.eT}' ().c is
the vector obtained from x by exchanging 0’s and 1's). A case analysis (similar
to the one found in the proof of Lemma 3.1) shows that M(2+1,3) thus
constructed has the 3 surjective projection property. Let A={a,b, §}. If'all
a,b,c <2 (or if all a, b, c>2') then IT (M(2',3)®M(2), 3))=B,. Otherwise, thh-
out loss of generality, let a<b<2', ¢>2'. Say ¢=2'+d. If d#+a,b then again
M,(M(2,3)@M(2,3))=B,. On the other hand, if d equals one of a, b, siay,
a<b=d then [IT,(M(2,3)®M(2',3))={000,011,100, 111} and I1,(M(2.,2)
@®M(2,2))={001, 010, 101, 110}, from which M2+ 3)=B,.
This yields ' '
M2, 3 SIM(2, 3)1+ M2, 2))

which together with the results in Sect. 2, yield
M2 L 3) S IM2, 1+ IM(2 1L 2]+

2
§'7+ O(ilog )
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and if [logn]=i+1 then

f(n,3)<M(n,3)| <IM (2%, 3)| < 4[log n]* + O(log n log log n).
Next we construct, in a similar manner, solutions for e=4, as follows:
M2+ o) =M2, @M, UM, e~ )@M(2, e—1)
u:[)zM(z", O M(2', e—¢).

It can be shown that M(n, k), as constructed by this modified algorithm, has

the k surjective projection property. The proof, being similar to that of Lemma .
3.1, is omitted.

For small values of e a closer look at these structures can improve the
solution. For example, for e=4 one might have
M2, 4=M(2, H@ M (2, Hu M(2, 3)®M(2, 3)
U{0%, 171 M(2,2) U M(2', 2* {07, 1%}
where (f or 1' is a vector of ¢ 0’s or I’s respectively. Hence
M2 L 4) < IM(2, 4+ IM(2, 3)|+ 4|(M (2], 2)]
which yields
f(n,4)<|M(n, 4)| <[ logn]> + O(log? nlog log n).
Following a preliminary version of this paper [2], other explicit con-
structions have been found showing [3] that
hs———
Jin )"n—k+1
and
f(n,k)<Bin(n; | k/2])+Bin (n; k— | k/2] - 1)

which are useful for large k, and [4]
f(n, k)=0(g(k) - (log n)")

for some function g and a=log(| k2/4] + 1), which is useful for constant k.

§ 4. The Probabilistic Approach

In this section, we present a simple probabilistic argument which shows that
for constant k we can find §’s with the surjective projection property which are
considerably smaller than the sets constructed in Sect.3. Furthermore, this
argument provides an estimate of the likelihood that a set S of a certain size
chosen at random has the surjective projection property. It turns out that the
probability is quite high even for fairly small sets.
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ili : i i For each
Our probability space, & shall be {B,.,. r} where r is an integer.
Ae{n; k}, weB,, we define a random variable Q, ,, by. 0,4..,8)=0if well ,(S)
and Q, .(S)=1 otherwise. Finally, define a random variable

Q=;ZQA.w'

Clearly. S has the surjective projection property iff Q(S)'=0. We 'w1sh to
compute the expected value of Q, ie., E(Q). This is most easily done in terms
of the expected values of the Q, s, ie. the E(QA.'W)’S, Now Q, ,(S)is 1 iff §
does not contain any of the 2"~* vectors v for which IT,(v)=w. Thus E(Q, )
=Bin(2"—2""*; r)/Bin(2"; r) for all A, w whence

E(Q)=2* x Bin(n; k) x Bin(2"—2"~%; r)/Bin(2"; 7).

Since 1 <a<b implies that a/b>(@-1Ab—-1), E(Q,.) is bounded above by
2n_2n—k)r/2nr=(1 _2—k)r. .
( Thus E(Q)<2* x Bin{n; k) x (1 —2-%. If we can find a value for r for which

E(Q)<1, then Q(S)=0 for some S, since Q(S) is always a nonnegative integer.
Theorem 4.1. For r=[k2*Inn] and nZ2, there exists Se{B,;r} having the
surjective projection property.

Proof. From the above discussion, one need only demonstrate that _}E(Q)<I.
Since E(Q)<2* x Bin(n; k) x (1 —27*y, Bin(n; ky<n*/k! and (1-2 k)<exp(
—2-%), E(Q)<(2/k") n*exp(—2~*r). For r=[k 2%Inn], we get E(Q)<(2 k<1
for k>3. For k<3, the estimate can be refined as the reader can easily check
to get the same result. [

Corollary 4.2. The probability that S chosen at random has the surjective pro-
jection property is Z1—E(Q).
Proof

E(Q):ioixProb{Q:i};iprob{gﬂ}=1—Prob{Q=0}. O

The following table uses Corollary 4.2 to make some .esti.mates _of 'the
likelihood of failing to pick an S at random which has the surjective projection

property.

Table 2

n k r Upper bound on Prob(Q >0)
32 5 500 0.823
32 5 1,000 10-7
32 5 1,500 1.34x 10

1,000 5 1,100 0.18

1,000 5 2,200 1.22x1071¢

1,000 5 3,300 8.32x 10732

dmee L e

i S TN TR, I YT T

sy
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Note that for k=5 the number of vectors we need to use to guarantee a
high rate of success is not abnormally large even for n=1,000. It seems likely
that the probabilistic approach might supply a practical solution for k=3,
since its failure can be made less than the probability of failure of any more
elaborate scheme. Alternatively, the probabilistic approach can be used to
generate a set S and check that it indeed has the surjective projection property.
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