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Abstract. This paper focuses on the problem of bounding fault detection probabilities in combinational circuits.
Two algorithms, the complete cutting algorithm and the gate blocking algorithm, are presented that always produce
true lower bounds on the detection probability of a fault. Both algorithms can be used to identify difficult-to-test
faults and to quickly construct test sets for specific faults. Both algorithms have qualitative versions which provide
insight into a circuit while avoiding arithmetic calculation. Both algorithms resulted from research in trying to
determine the accuracy of the safety factor heuristic of Jacob Savir.
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1. Introduction

Random testing is an important technique for testing
computer circuits. To construct a test set correctly it
is important to know the probability that each detectable
fault in a circuit can be detected at random (see Savir
and Bardell [12] for details). In general, computing this
probability is a #P-complete problem (see Garey and
Johnson [5]) so we would not expect any fast algorithm
to always produce a useful answer. Nevertheless, be-
cause of the practical importance of the problem many
authors have examined a variety of approaches to this
problem and the closely related problem of computing
signal probabilities (see [1]-[4], [6], [7], [9]-[13]).

In Savir, Ditlow and Bardell [11] circuit cutting algo-
rithms were introduced for bounding the signal proba-
bility of a line (see Markowsky [9] for a complete
analysis). Also in [11] it was shown how ‘‘auxiliary
gates” could be used to reduce the fault detection prob-
ability problem to the signal probability problem.

Unfortunately, algorithms based on auxiliary gates
can return 0 as the detection probability for faults that
have a nonzero detection probability. Furthermore, the
auxiliary gate approach slows analysis by increasing cir-
cuit complexity.

In some proprietary notes, Jacob Savir described a
heuristic, which he calls the safety factor heuristic, to
estimate the fault detection probability of certain faults.
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This technique often gives very accurate estimates but
has the failing that the estimates could be greater than
the true probability. This paper presents algorithms that
always return true lower bounds.

Besides Savir, other authors have studied algorithms
for approximating the detection probability of a fault.
Brglez [1] studies this question together with the suscep-
tibility to random testing of large combinational net-
works. Seth and Agrawal [13] study this question and
provide a general model for understanding the problem.

1.1. Notation

B will denote the two element set {0, 1}, and for any
natural number, n, B” will denote the set of Boolean
n-tuples. BF(n) will denote all functions f:B" — B
and the Boolean operations AND, OR, NOT will be
represented by &, | and ~.

As is well known, every function in BF(n) can be
represented using n variables and &, | and ~ . B” will
be considered a probability space with the uniform
measure. We will use P(X) to denote the probability of
X € B". Given a combinational circuit, C, the set of
inputs to C may be identified with B” where n is the
number of primary inputs of C.

Definition 1. Let C be a combinational circuit with a
single output line z. Further, let g be an arbitrary line
in C and p a fault in g. Let 4, be the set of inputs to C
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which cause the value 1 to appear in g, and let B, be
the set of inputs to C for which the value produced at
z differs depending on whether the fault p is present in
C. Thus, B, is the set of inputs that detect the fault p.

a) The signal probability of q is P(A,).

b) The fault detection probability of p is P(B,). We
will sometimes use P,(p) to represent the detec-
tion probability of p.

Generally, calculating the fault detection probability
of a fault is more difficult than calculating the signal
probability of the line containing that fault, since a fault
can only be detected under appropriate sensitizing con-
ditions. For example, consider the circuit shown in
figure 1.

s/8

Fig. 1. A simple circuit.

To detect the stuck-at-zero fault in line g at output
Z requires setting lines ¢q, a, b, ¢ to 1. Determining the
probability of this happening is at least as involved as
determining the signal probability of line g. If the lines
a, b, ¢ and q are independent, the probability of detect-
ing a stuck-at-zero fault in line ¢q is simply the product
of the signal probabilities of lines a, b, ¢ and g. The
bane of most circuit analysis is that independence can-
not be assumed between arbitrary lines in circuits.

Consider the circuit in figure 2 and the three faults
X, stuck-at-zero (X, — s/0), X; stuck-at-zero (X5 — 5/0),
and a stuck-at-one (a — s/1). We will briefly describe
the results that the safety factor heuristic obtains for
the three faults just mentioned. The steps of the safety
factor heuristic are:

1. Calculate signal probabilities of all lines in the tree
part of the circuit, i.e., all lines which are not fed
by reconvergent fanout.

2. Use the full-range cutting algorithm (see Savir,
Ditlow and Bardell [11]) to estimate the signal proba-
bilities left untouched in step 1. The full-range cutting
algorithm can be run several times to obtain better
bounds.

3. Combine steps 1 and 2 to get the best estimate of
signal probability for each line in the circuit.

4. For each fault of interest, trace a path from the fault
to a primary output. Compute an estimate for the
detection probability by assuming that all relevant
lines are independent.

5. Multiply the estimates in step 4 by a safety factor
that is determined by the network topology and the
relationship of the fault to the rest of the network.

The hope is that this final result is a true lower bound
on the detection probability of the fault. We will not
discuss how the safety factor is estimated since we are
interested in presenting the overall strategy rather than
in the particulars of the algorithm.

To motivate the subsequent discussion we briefly
sketch how the safety factor heuristic is used to analyze
a circuit. Figure 3 shows what the circuit of figure 2
looks like at the end of step 1. Only lines e and z do
not have a signal probability since they are the only
lines which are fed by reconvergent fanout.

To cut all reconvergent fanout in the circuit of figure
2 requires cutting one of lines b or b’ and one of lines
¢ or ¢'. Thus there are four possible sets of cuts: Cuts,
= {b, c}; Cuts, = {b, c'}; Cutsy = {b’, c}; Cuts, =
{b', ¢'}.

Figures 4 to 7 show all four pairs of cuts that cut
all reconvergent fanout. Following the full-range cutting
algorithm, all cut lines receive a lower bound of 0 and
an upper bound of 1 on their signal probability. These

x s/e
xiz OR h END d
3 z
. 6, @J‘W
X. .50 b 6 5
j " — 2
Xe 6

Fig. 2. A sample circuit for analysis.
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Fig. 3. After step 1 of the safety factor heuristic.
Table 1. A comparison of different techniques.
Complete Cutting Gate Blocking
True Safety Lower Lower Lower Lower Lower Lower Lower Lower
Detection Factor Bound Bound Bound Bound Bound Bound Bound Bound
Fault Probability Estimate Cuts; Cuts, Cuts, Cuts, X; =0 X, =0 X, =1 X; =1
X, — s/0 20/64 21/64 14/64 0 18/64 0 8/64 12/64 14/64 12/64
a — s/l 32/256 27/512 0 0 0 0 N/A N/A 24/256 16/256
X; — s/0 16/128 7/128 0 0 12/128 0 N/A 8/128 4/128 N/A

bounds are propagated as if all lines are independent
and the results yield correct bounds. Different cuts can
be used to get better values. The results produced by
the safety factor heuristic are summarized in table 1
along with the results produced by the algorithms dis-
cussed in this paper. Note that the estimates produced
for a — s/1 and X; — s/0 are lower bounds for the detec-
tion probabilities for those faults while the estimate pro-
duced for X, — s/0 is not a lower bound. At this time,
there are no techniques for deciding how good an esti-
mate is produced by the safety factor heuristic.

2. The Complete Cutting Algorithm

The complete cutting algorithm is a slight modification
of the safety factor heuristic algorithm and is similar
to the algorithm described by Gaede, Mercer and
Underwood [4]. It is more conservative than the safety
factor heuristic, but always computes true lower bounds.
The steps of this algorithm are:

1. Cut the least number of reconvergent fanout lines

so the circuit has no remaining reconvergent fanout.

Let [0, 1] be the bounds on the signal probability

of every cut line.

. Propagate the bounds throughout the circuit to derive
bounds on the signal probability of each line.

2.

4. For each fault of interest, trace a path from the fault
to a primary output. Compute an estimate for the
detection probability by assuming that all relevant
lines are independent.

The complete cutting algorithm requires that all re-
convergent fanout must be cut before estimating the
detection probabilities. To illustrate the complete cutting
algorithm, let’s apply it to the circuit of figure 2 for
the four sets of cuts considered earlier.

For figure 4 we estimate the detection probabilities
of the three faults using the inequalities

P,X, —s/0) =2 P(X, = 1) X P(c' = 1)
X Ple = 1)
= 1/2 X 1/2 X 7/8 = 7/32 = 14/64
Pija—5s/l) 2z Pa=0) X Plc=1) XPXs=1)
X P(d = 1)
=34 x0x12x14=0
PyX; — s/0) =2 Pb'=1) X P(X,=1) X P(c = 1)
X PXs =1) X Pd =1)
=1/2X12Xx0x1/2x1/4=0
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Fig. 4. The complete cutting algorithm for the first set of cuts.
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Fig. 5. The complete cutting algorithm for the second set of cuts.
where P, denotes the detection probability and P de- Py(a—5s/1) =2 P@a=0)XPlc=1) X P(Xs = 1)
notes the probability of the corresponding signal being X Pd = 1)
in the line. If P is not known exactly, a lower bound N
for it must be used. The quantities needed to bound the =12 x0x1/2x38=0
detection probabilities can read directly from figure 4. _ _ _ _
For figure 5 we get PyX; —s/0) =2 Pb=1)XPX,=0) X PX; = 1)
PuX, — s/0) = P(X, =1) X P(c’' =1) X P(e = 1) X Ple =1
> 12 %0 X 78 =0 = 1/2 X 1/2 X 1/2 X 3/4 = 3/32
Pya — s/1) =2 P@a=0) X Pc=1) X PXs = 1) = 12/128
X Pd = 1) Finally, for figure 7 we get
>34 X 12X 12 %0 =0 PyX, —s/0) =2 PX,=1)XPc'=1)XPle=1)
Pd(X3 — S/O) > P(br — 1) XP(X4= 1) ><P(c= 1) =12 x0 x 13/16 =0
Pja —s/1) =2 P@a=0) X Plc=1) X PXs=1)

X P(Xs = 1) X P(d = 1)
X Pd = 1)

=12 x12x12x12x0=0
and this does not supply any useful bounds. Z 12 X34 x 172 X0 =0
For figure 6 we get P;X; —s/0) =2 Pb=1) XPX,=0)XPla=1)
PyX, —s/0) =2 PX,=1) XP(c'=1)XPle=1) X PXs =1) X Pd=1)

v

1/2 X 3/4 x 3/4 = 9/32 = 18/64

Y

172 x1/2x0x12x0=0
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Fig. 6 The complete cutting algorithm for the third set of cuts.
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Fig. 7 The complete cutting algorithm for the fourth set of cuts.

Table 1 includes all the results obtained by the com-
plete cutting algorithm for the circuit pictured in fig-
ure 2. Note that the complete cutting algorithm always
produces lower bounds. For the X; — s/0 fault it even
produces a better lower bound than the safety factor
heuristic. On the other hand, the complete cutting algo-
rithm fails to produce a nonzero lower bound for the
fault @ — s/1 whereas the safety factor heuristic pro-
duces a correct lower bound. We conclude this section
by justifying the complete cutting algorithm.

Definition 2. Let f, g be in BF(n). We say f < g if and
only if for all x in B", f(x) = 1 implies that g(x) = 1.

Lemma 1. Let f;, £, g1, g be in BF(n) be such that
fisgadfp<g Thenfi&fh,<g&e filh
< g |lgand °fi = "g.

Proof. This proof is straightforward and left to the reader.

Lemma 2. Let f, g in BF(n) be such that when fand
g are expressed in terms of Boolean operators and n
variables, they have no variables in common. Then for
alla, bin B

P((f=a) & (g = b)) = P(f = a) x P(g = D).

Proof. Suppose f uses the variables X;, ..., Xy and g
uses the variables X; 4, ..., Xi4; where k + j < n.
The variables can always be renumbered to make this
true. Note that f may be considered a member of B*
and g a member of B’. Let

W= {win B*| f(w) = a}

Y = {yin B | g(y) = b}.
Now
P(f=a) & (g = b)) = (W x Y| x 277U™R)y/2"
|W x Y|2Ut0 = ((w| x 2"7%2m
x (Y| = 287127
P(f =a) X P(g = b),

Il

where we have used |X| to denote the cardinality of
the set X.

Theorem 1. The complete cutting algorithm is correct.

Proof. Given a combinational circuit C, to each line
assign the Boolean function that describes the signal
that appears on that line. Given the line g, f, will de-
note the function that normally should appear on q.
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By induction we will assign two additional functions,
L, and U, to the line g. These functions will have the
following properties.

a) L, =f, =V,

b) If two lines ¢ and ¢’ meet at a gate, the functions
L, U, Lqr, U, can be expressed in terms of Bool-
ean variables so that functions associated with dif-
ferent lines have no variables in common.

In the base case of the induction we assign L,=f,=
U, to all primary input lines g. Also, all lines that are
cut receive the function that is identically 0 as L, and
the function that is identically 1 as U,. At this point
it is clear that Property (a) is satisfied.

Now proceed inductively through the gates. If g and
q' meet at an AND gate which has ¢"” as an output line,
set L,» = L, & L, and U, = U, & U,. By Lemma
1, Property (a) holds for ¢"”. These results extend nat-
urally to OR and NOT gates, and to gates having more
than 2 input lines.

To see that Property (b) holds, simply use the rep-
resentation of L, and U, that arises from the initial
assignments and using the Boolean operations implied
by the gates. Since the “‘cut” circuit is a tree it is im-
possible for two lines that meet at a gate to have any
variables in common.

Now we can turn our attention to the problem of esti-
mating detection probabilities. Given a fault and a path
from that path to the output, the probability of detecting
that fault can be expressed in the form P(( Jo, = a)
&(f,=a) & ... & (fg, = @) where q,, q,, . ..,
gy are the lines needed to sensitize the path and detect
the fault, and g; is in B for all i. Let X be the event

(Jo =a) & (fy, =a) & ... &(qu=ak)
and Y the event

(hy, = a) & (h,,
where

hy, = L, ifa; = 1 and h,, = g 1fa; = 0.
It is easy to se that ¥ € X so that P(Y) < P(X).

=a2)&...&(hqk=ak)

41

Theorem 1 now follows by using Lemma 2 inductively.

3. The Gate Blocking Algorithm

Table 1 shows that in all cases the complete cutting algo-
rithm only produces the trivial lower bound of O for
the fault @ — s/1. This is because the complete cutting

algorithm requires that either ¢ or ¢’ be cut. Thus, one
of the two lines will always supply a zero to the prod-
uct used to bound the detection probability. To detect
a — s/1 both ¢’ and ¢ must have the value 1.

For the fault @ — s/1, the complete cutting algorithm
fails to produce a useful lower bound because too many
lines are cut. This suggests looking at algorithms that
require fewer cuts. The gate blocking algorithm makes
fewer cuts but still reduces a combinational circuit to
one without reconvergent fanout. In essence, it simu-
lates cuts by setting up the primary inputs appropriately
and propagating the results. Similar ideas have been
explored by several authors (see Chakravarty and Hunt
[2] and [3], and Savir [10]).

The steps of the gate blocking algorithm are as
follows.

1. Identify all gates that are on reconvergent fanout
paths, but which are not fed by any gates that are
on reconvergent fanout paths. Call such gates mini-
mal gates.

2. For each minimal gate examine the consequences
of blocking that gate, i.e., of setting one of its input
lines to O for an AND or NAND gate or to 1 for
an OR or NOR gate. The gate is said to be blocked
because the values assigned to the other lines are
irrelevant. Examining the consequences means trac-
ing the ouptut of the gate through the circuit and
removing irrelevant parts of the circuit.

3. Repeat Step 2 until the circuit contains no more re-
convergent fanout.

4. Use the techniques of Section 2 to produce lower
bounds on the detection probabilities in the reduced
circuits. Multiply the lower bounds by the probabil-
ity associated with the blocking conditions.

We illustrate the gate blocking algorithm on the cir-
cuit shown in figure 2. To begin with, it is clear that G,
and G, are the only minimal gates in the circuit. G, can
be blocked by setting X; or X, to 0. G, can be blocked
by setting X, or X; to 1.

Setting X to 0 causes a to go to 0 which blocks G,.
The circuit of figure 2 is effectively reduced to the circuit
shown in figure 8. Figure 8 shows the signal probability
of each line calculated using the standard techniques.

Of the three faults considered in table 1, only the fault
X, — 5/0 can appear in the circuit of figure 8. The prob-
ability of detecting the single fault X; — s/0 in the circuit
of figure 8 is 1/4. To convert this to a lower bound for
the circuit of figure 2 we must multiply by P(X; = 0)
which is 1/2. Thus our lower bound for the detection
probability of X; — s/0 in this example is 1/8 = 8/64.
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Fig. 8 The effect of blocking G, by setting X3 = 0.
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Fig. 9. The effect of blocking G, by setting X, = 0.

Setting X, to 0 yields the circuit of figure 9. This
time we can produce nontrivial lower bounds for X,
— §/0 and X; — s/0. In the first case we get 1/2 X 1/2
X 3/4 = 3/16 = 12/64 and in the second we get 1/2
X 1/2 X 12 x 1/2 = 1/16 = 8/128.

Now we examine the results of blocking G,. If we
set X, = 1, the circuit in figure 10 results. All three
faults considered in table 1 can be analyzed from figure
10. Thus

PyX, — s/0) = P(X; = 1) X P(e = 1)
X P(X, = 1)
> 1/2 X 7/8 X 1/2 = 7/32 = 14/64

Pya — s/1) = Pla=0) X P(Xs = 1) X P(X; = 1)
X P(X, = 1)

v

34 X 1/2 X 1/2 X 1/2 = 3/32
= 24/256

Py(X, — s/0) = P(X, = 1) X P(X, = 1)

X P(Xs = 1) X Pd = 1)

X P(X, = 1)

v

1/2 X 1/2 x 172 X 1/2 X 172
= 1/32 = 4/128

Note how the blocking condition, X, = 1 must be
figured into each one of the detection probability lower
bounds.

Finally, block G, by setting X; = 1 yields the circuit
of figure 11. Repeating the calculations for the only two
available faults now yields

PX, — s/0) = P(X, =1) X Ple = 1) X P(X, = 1)
> 1/2 X 3/4 X 1/2 = 3/16 = 12/64

Pya — s/1) = Pa=0) X P(Xs = 1) X P(d = 1)

X P(X, = 1)

12 X 1/2 x 1/2 x 1/2 = 16/16

= 16/256.

v

The above results are listed in table 1. Note that the
complete cutting algorithm produces better bounds for
some faults than the gate blocking algorithm. On the
other hand, the gate blocking algorithm produces
bounds for faults such as @ — s/1 which cannot be
bounded nontrivially by the complete cutting algorithm.
Both algorithms produce true lower bounds. Further-
more, for each of the four cuts studied, better bounds
were produced than any correct bounds that were pro-
duced by the safety factor heuristic. The arguments of
Section 2 can be used to justify the gate blocking
algorithm.

4. Qualitative Versions of the Algorithm

The purpose of producing lower bounds on detection
probabilities is to be able to estimate the number of
patterns needed to test a circuit (see Savir and Bardell
[12]). In most cases all that is needed is a nonzero bound
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Fig. 11. The effect of blocking G, by setting X; = 1.

that is not too small. Since both algorithms presented
here reduce a combinational circuits to fanout-free cir-
cuits it seems reasonable to apply known results from
fanout-free circuits. Markowsky [8] presents a very effi-
cient procedure that constructs a set of n + 1 tests that
can diagnose all single faults in a fanout-free combina-
tional circuit with # primary inputs. In particular, this
means that every single fault is detectable. Actually, [8]
contains further references to papers that show that any
multiple fault in a fanout-free combinational circuit is
detectable. This leads to the next theorem.

Theorem 2. In a fanout-free combinational circuit with
n primary inputs the detection probability of any fault
is at least 1/2".

Proof. Since every fault is detectable, there must be at
least one input that detects it.

Returning to figures 8-11, we see that any fault
(single or multiple) appearing in figure 8 has a detection
probability of at least 1/8 which is 1/22 x 1/2, where
1/2 = P(X; = 0). Similarly, any fault appearing in fig-
ure 9 has a detection probability of at least 1/16. For
figures 10 and 11 the results are 1/32 and 1/16 respec-
tively. While the bounds are not very accurate, they re-
quire almost no work to obtain.

Furthermore, using this approach, which could be
called the qualitative approach since it avoids arith-
metic, allows us to detect the difficult-to-test faults by
seeing which lines do not appear in any of figures 8-11.
In other words, from Theorem 2 it follows that any fault
that appears in figures 8-11 has a detection probability
bounded from below by 1/32 or better. Comparing fig-
ure 2 to figures 8-11 shows that every line except ¢
occurs at least once in figures 8-11. Thus c is the only
line that needs special attention. In fact, the fault
c — s/1 is not detectable, so only the fault ¢ — s/0 is
detectable. Thus, ¢ will never appear in any reduction
of figure 2 which is fanout-free.

The gate blocking algorithm can be used to produce
a test set for the faults that appear in the reduced cir-
cuit: combine the conditions needed for blocking gates
with the test sets needed to test the resulting fanout-
free circuit. Markowsky [8] provides a simple proce-
dure for constructing test sets that diagnose all single
faults and provides references for constructing test sets
that detect all multiple faults in the resulting fanout-
free circuit.

Goldberg and Lieberherr [6] provide an algorithm
that produces a test vector for any specific fault for
which has a nonzero lower bound on its detection prob-
ability. Because it is easy to construct the test vectors
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directly for all the faults in any fanout-free circuit pro-
duced by the gate blocking algorithm, one does not need
to use their algorithm to construct the test vectors.

5. Conclusion

The two algorithms and their qualitative versions pre-
sented here always produce correct lower bounds for
detection probabilities of faults. The short cut can even
efficiently produce test vectors for any fault for which
it returns has a nonzero lower bound. This approach
might be worth pursuing further as an alternative and/or
a supplement to random testing.

As we saw in the analysis of the circuit of figure 2
there are faults for which zero lower bounds are re-
turned even though the detection probability is nonzero.
Because of the #P-complete nature of the detection prob-
ability problem one expects this to happen with any
algorithm. The usefulness of the techniques described
here need to be established by testing on real circuits.
The author hopes that researchers with the facilities to
conduct these tests will find the ideas presented here
sufficiently interesting to warrant testing them. Some
of the issues involved in empirical verification of results
are discussed in Gaede, Mercer and Underwood [4],
and Krishnamurthy and Tollis [7].
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