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Bounding Signal Probabilities in Combinational Circuits
GEORGE MARKOWSKY

Abstract—1In [2] Savir, Ditlow, and Bardell presented an algorithm for
estimating the signal probability of a line in combinational circuits, but
were unable to show that the algorithm always produced correct resuits.
This paper shows that their algorithm for cutting reconvergent fan-out
lines in a circuit eventually produces a circuit without reconvergent fan-
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out that can be used to estimate signal probabilities in all lines of the
original circuit.

Index Terms—Error detection, fault detection, random testing, signal
probability.

I. INTRODUCTION

The signal probability of a line is the proportion of all possible
inputs that produce a 1 on that line. It is easy to compute the signal
probability of all lines in a circuit that do not have reconvergent fan-
out using the standard dependence relations of probability theory such
as the ones given in Feller's book [1] or the ones given in Savir,
Ditlow, and Bardell's paper [2]. In particular, the signal probability
of the output line of an AND gate is the product of the signal
probabilities of the input lines. The signal probability of the output
line of an inverter (NOT gate) is the complement of the signal
probability of the input line, i.e., Prob(Out) = 1 ~ Prob(In). The
signal probability of the output of an oOr gate is the complement of the
product of the complements of the signal probabilities of the input
lines. In other words,

Prob(Out) = 1 — (1 — Prob(In;))(1 — Prob(In,)) - - - (1 —Prob(In,))

where Iny, In;, - - -, Iny are the input lines. Throughout this paper,
NAND gates will be considered to be AND gates followed by a NoT
gate, and NOR gates will be considered to be Or gates followed by a
NOT gate.

If the circuit has reconvergent fan-out, the problem is more
complicated, because the signal probabilities are not longer indepen-
dent. As a consequence of this fact, Savir, Ditlow, and Bardell
estimate the signal probability of lines rather than calculate them
exactly. Such an approach suffices for their purposes since they only
need to bound the signal probabilities away from 0 and 1.

II. AN OUTLINE OF THE ALGORITHM

The following are the key steps in the Savir, Ditlow, and Bardell
algorithm.

1) Assign a lower and upper bound of 1/2 to each primary input of
the circuit. Each line in the circuit will be eventually have a lower and
upper bound so that its signal probability will lie between its two
bounds.

2) Use the rules for reconvergent fan-out-free circuits to propagate
lower and upper bounds as far as possible through the circuit. Thus,
when passing through an AND gate, the lower and upper bounds of the
output line are the products of the lower and upper bounds,
respectively, of the input lines. When passing through an inverter, the
lower and upper bounds of the output line are the complements of the
upper and lower bounds, respectively, of the input line. Finally,
when passing through an oR gate, the lower and upper bounds of the
output line are the complements of the products of the complements
of the lower and upper bounds, respectively, of the input lines.

3) Choose a minimal reconverging fan-out line. Minimal means
that no line feeding the line in question is a reconverging fan-out line.
If there is no minimal reconverging fan-out line, stop the algorithm
because every line now has correct lower and upper bounds. If there
is a minimal reconverging fan-out line, cut one of the reconverging
branches of the line and assign new lower and upper bounds
according to the rules in Section IV.

4) Goto Step 2.

The remainder of this paper fleshes out the sketch given above and
proves that the method works correctly.

HI. CLASSES OF GATES

Definition 1: a) Let C be a circuit. A path from one point in the
circuit to another has odd parity if it goes through an odd number of
inverters or inverting gates. Otherwise, it has even parity.

b) Let p, g be two points on lines attached to the same fan-out
point, and let G be any gate which has two disjoint paths, P and Q,
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Parity of Q Type of Gate (G) Class
Even AND/NOR 1
Odd OR/NAND 1
Even OR/NAND 2
Odd AND/NOKk 2

A Fig. 1. Assigning the class to a gate.

such that P starts at p and Q starts at g, and they both meet for the
first time as inputs to G. Then, G is of Class I or Class 2 depending
on the table in Fig. 1. ##

The simple circuit in Fig. 2 illustrates how Definition 1 is to be
used. Note that gate G2 in Fig. 2 becomes a Class 2 gate if p and ¢
are switched. Also, a gate may belong to more than one class, such as
gate G4 in Fig. 2.

IV. CUTTING LINES

As long as a circuit has reconvergent fan-out, Savir, Ditlow, and
Bardell choose a minimal reconvergent fan-out line and cut one of the
branches. We assume that all fan-out points have degree 2 since fan-
out points of higher degree can be replaced by a series of points of
degree 2. The cut branch is labeled with the point p and the uncut
branch is labeled with the point g. Assume that the lower and upper
bounds at the fan-out point before the line was cut were L and U,
respectively, then the bounds assigned at point p are chosen as
follows.

1) The bounds [L, 1] are assigned if there are no Class 2 gates
(relative-to p and q) in the circuit.

2) The bounds [0, U] are assigned if there are no Class | gates
(relative to p and q) in the circuit.

3) The bounds [0, 1] are assigned if there are both Class 1 and
Class 2 gates in the circuit.

The rules given above are a simplification of the rules in [2], and
are based on an observation of Journeau. Once the bounds are
assigned to p they are used as independent values to create new
bounds in all the tree-like parts of the circuit that result from cutting p
away from q.

V. Basic PROOF TECHNIQUES

To prove that the Savir, Ditlow, and Bardell algorithm is correct
requires that functions, rather than probabilities be assigned to lines.
Our goal is to show that the algorithm preserves ordering relations
among functions. The relations between bounds and signal probabili-
ties follow directly.

To begin with, assume that each primary input line receives as a
lower and upper bound the function represented by a single variable.
Functions are assigned to all the lines throughout the entire circuit in
the obvious way. For noninverting gates, lower bound functions for
output lines are derived from the lower bound functions of input lines
and upper bound functions of output lines are derived from upper
bound functions of input lines in the obvious way using the
appropriate logical operators. Of course. for inverting gates, the
lower bounds of the output lines use the upper bounds of the input
lines, and vice versa.

Boolean functions are partially ordered by the relation <, where f
< gifandonly if f(w) = 1 implies that g(w) = 1 for all inputs w to
the circuit. It is very easy to see that replacing a lower bound function
by a function less than or equal to it. or replacing an upper bound
function by a function that is greater than or equal to it, decreases
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lower bounds ‘and increases upper bounds of all lines that are
successors of that line.

We will first consider the substitution [L, 1], which is allowed if
there are no Class 2 gates. Fig. 3 motivates the subsequent work. Fig.
3(a) shows the circuit C before the minimal fan-out line is cut. Both
points p and g have the functions Y as a lower bound and Z as an
upper bound. Nothing is known about ¥ and Z except that ¥ < Z,
and Prob(Y') = L and Prob(Z) = U, where Prob(F) is defined as
the ratio of the number of inputs that make F | to the total number of
possible inputs for F,

Fig. 3(b) shows the minimal fan-out line being cut, but the same
bounds remain on the line emanating from p. We call this circuit C*
to distinguish it from the circuit C. Note that all the bounding
functions are the same in C and C*.

In Fig. 3(c), the function Z at point p is replaced by the function 1,
which is identically 1 for all inputs. Since Z < I, it is clear that the
new bounding functions can only enlarge the range on lines in the
circuit.

Fig. 3(d) shows the final step which consists of replacing the
function Y by a function X such that X is Y rewritten with completely
new variables which appear nowhere else in the circuit and Prob(X)
= Prob(Y).

Our plan is to show that the bounds in this stage are wider than the
original, i.e., if e is a line in the circuit C, and G, and H, are the
lower and upper bound functions in Fig. 3(c)sothat G, < H,and G by
and H¥ are the corresponding bounding functions in Fig. 3(d), then
we will show that

Prob(G*) < Prob(G,) < Prob(H,) < Prob(H *).

In Fig. 3(d), bounding functions are computed using X, Y, Z, and
other variables, instead of using only Y, Z, and other variables as in
Fig. 3(a)-(c).

To make Fig. 3(d) look like a conventional circuit one may imagine
that the circuit feeding the point ¢ has been duplicated for p so that
totally new primary inputs are added. In particular, we assume that
the function X is totally independent of the functions Y and Z. It is
important to note that the lower and upper bounds at point p are no
longer derived from the lower and upper bounds of the input lines,
but that throughout the rest of the circuit C* lower bounds are
derived from lower bounds and upper bounds are derived from upper
bounds.

Fig. 3 applies only to circuits without Class 2 gates. A similar
figure could be drawn for circuits without Class | gates. In such
circuits, the lower bound Y at p would be replaced by 0 and the upper
bound Z at p would be replaced by X.

VI. THE X'YZ REPRESENTATION

To study the effects of these replacements some simple results
about Boolean functions involving X, Y, and Z are needed. To begin
with, every Boolean function that has X, Y, and Z as inputs along
with Boolean variables that are totally unrelated to these variables can
be written uniquely in the form

AXY+BXY'Z+CXZ'+DX'Y+EX'Y'Z+FX'Z",

We will call this form the X YZ representation of a function. Since Y
<Z,YZ=Y,Y'Z" =2Z',and YZ’' = 0, there are only six terms
in the expression instead of eight as one might expect. Of course, A,
B, C, D, E, and F are Boolean functions involving variables that do
not occur in X, Y, and Z. )

In particular, in the notation just used, G (H,) can be derived from
GX(H*) by substituting Y for X in the expansion just described. To
prove our main result requires that conditions be established under
which substituting Y for X increases or decreases the probability of
the resulting function. These conditions are given in Lemma 1.
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Class 1 or Class 2
P
G4 Gs
q B
—) 63
Class 2
Fig. 2. A simple illustration of definition |,
__[(1.2] 3) If Prob(X') = Prob(Z) and
The Circuit ? F=C (1
q Y,z
(a) The Stal"ting Configurz[lcion F+A =C+D (12)
New Line [1,Z] .
FA=CD (13)
C\ln: The Circn[x%tz(];‘"
T (b Catting the Line F+B=C+E (14)
New Line [Y,1] FB=CFE (15)
Cie  The Chrepie S* then Probl(H(Z, Y, Z)) = Prob(H(X, Y, Z)).
(c) Replacing One Copy of Z by 1 4) If Prob(X) = Prob(Z ) and
New Line (x,1] F=<C (16)
Cut  The Circuit C* F+A<C+D (17
(@) Replaci ! One Copy % yr’:“x
eplacing One Copy o Yy
Fig. 3. Stages in replacing bounds when there are no class 2 gates. Fa=cD (s
Lemma I: Let H(X, Y, Z) = AXY + BXY'Z + Cxz' + F+B<C+E (19)
DX'Y + EX'Y'Z + FX'z' where A, B, C, D, E, and F are the FB<CE (20)
functions of Boolean variables that do not appear in X, Y, or Z. =
Furthermore, assume that the Boolean variables that appear in X do then Prob(H(Z, Y, Z)) < Proby HX, Y, Z)).
not appear in Y or Z, and that Y < Z. Then the following are true. Proof: 1) Let w = P, b(X) = Prob(Y). Th
1) If Prob(X) = Prob(Y) and r00/- 1) Let w = Prob(X) = Prob(¥). Then
A=D ) Prob(H(Y, Y, Z)) - Prob(H(X, Y, Z))
A+E=D+B '(+ means oR) @ = w(1 ~ w)(Prob(A4) — Prob( D)) + wProb( Y’ Z)(Prob(E)
AE= DB (Concatenation means AND) 3) ~ Prob(B)) + wProb(Z") (Prob(F) ~Prob(C))
A+F=D+C @ =w[Prob(Y’Z) [Prob(A4) + Prob(£)— (Prob(D) + Prob(B))]
AF=DC 5 +Prob(Z”) [Prob(A ) + Prob(F) — (Prob(D) + Prob(C))]]
Prob(H(Y, Y, Z)) = Prob(H X, Y, Z). The last equation follows because 1 - w = Prob(Y'Z) +
e I o) pr)gb(y) oD ) Prob(Z"). If (2)~(5) hold [(1) is not really needed for this], Prob(4)
6 + Prob(E) = Prob(4 + E) + Prob(4E) = Prob(D + B) +
A=D ©  prob(DB) < Prob(D) + Prob(B). Similarly, Prob(4) + Prob(F)
= Prob(4 + F) + Prob(AF) = Prob(D + C) + Prob(DC) =
A+E=D+B D brob(D) + Prob(C). Since . Prob(Y"Z) and Prob(Z" ) are all 20,
AE<DB ®) it follows that
A+F<D+C ©) Prob(H(Y, v, Z))=zProb(H(X, Y, Z))
2) This proof can be derived from the proof of 1) just by reversing
AF=DC (10 all the inequality signs.
then Prob(H(Y, Y, Z)) < Prob(H(X, Y, Z)). 3) Let w = Prob(X) = Prob(Z), so that 1 — w = prob(7\
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Arguing as before we derive the equation
Prob(H(Z, Y, Z))-Prob(H(X, Y,Z))
= (1 — w)[Prob(Y) [Prob(A4)+ Prob(F) — (Prob(C) + Prob(D))]
+ Prob( Y’ Z) [Prob(B) + Prob(F) — (Prob(£) + Prob(C))]]

As in 1), it follows that Prob(F') + Prob(A4) = Prob(C) + Prob(D)

and that Prob(F) + Prob(B) = Prob(C) + Prob(E).
4) This is like 3) but with the direction of all inequality signs
reversed.

VII. THE MAIN RESULT

Theorem 1: Let C be a circuit that has reconvergent fan-out. Pick
a minimal reconverging fan-out point and label one reconverging line
p and the other fan-out line g. Assume that C does not contain any
Class 2 gates. Cut the line containing p in C to get the circuit C* as
shown in Fig. 3, and compute all lower and upper bound functions in
terms of X, Y, and Z. Then substituting Y for X in every lower
bound function cannot reduce the signal probability of the function
and substituting Y for X in every upper bound function cannot
increase the signal probability of the function. Thus, the bounds
derived in C* using an independent variable X are correct for the
lines in C.

Proof: More specifically, we will prove that the XYZ represen-
tations of all lower bound functions in C* satisfy (1)-(5) of Lemma 1,
while the X'YZ representations of all upper bound functions satisfy
(6)-(10) of Lemma 1.

The proof is by induction on the length of the longest path in C*
from either point p or point g to the line in question. Lines not
descended from either p or g are considered to have distance 0.
Clearly, since the functions on all lines at distance 0 are independent
of X, Y, and Z, the XYZ representations of both lower and upper
bound functions have A = B = C = D = E = F, so both (1)-(5)
and (6)-(10) hold. The only lines at distance 1 are the lines starting at
p, which has bounds [ X, 1], and the line starting at g, which has
bounds [ ¥, Z]. Since the X YZ representations of X, Y, and Z are (4
=B=C=1,D=E=F=0,A=D=1,B=C=E=F
=0),and(4 = B=D=E = 1;C = F = 0), respectively, it is
easy to check that the appropriate equations hold.

Now assume that for some line in C* either the X YZ representa-
tion of the lower bound violates (1)-(5) or the X YZ representation of
the upper bound violates (6)-(10). Let e be such a line that is at the
shortest distance from p or g. This means that for every line feeding
into e, the X'YZ representations of the bounds behave as required by
the induction hypothesis. Since e is at the shortest distance, it is the
output line of a gate and not the output of a fan-out point. Note that e
is not the output of an inverter, since if the input line of an inverter
has the desired properties. it is trivial to verify that the output line
does too.

To simplify matters assume that e is the output line of an AND gate
G with input lines iy, &, **-, iy. We shall shortly discuss how to
handie OR gates and deal with other assumptions that we make for this
case. Let L, L,, - -+, L, be the lower bounds and U;, U, - -+, Uy be
the upper bounds on the input lines i, iy, - - -, i. If L and U are the
lower and upper bounds of e, then L = L{L, --- Ly and U = U,U;
-+« Uy. Assume further that U does not satisfy (6)-(10), but that each
U,;does. Let A,, B;, C;, D;, E;, and F, be the coefficients of the XYZ
representation of U;, and A, B, C, D, E, and F be the coefficients of
the X'YZ representation of U. Clearly. we havethat A = A4, -+ Ay,
B = B, --- By, etc. Now if for all i, A; < D;, then A = D.
Similarly, if for all /, A,E; = D;B;and A;F; < D,C;, then AE < DB
and AF < DC. Thus, either (7) or (9) are the only ones that can be
violated. Assume that (7) is violated. The proof for (9) is very similar
and will be discussed shortly.

Thus, we have that foralli, A, + E; < D, + B,,butA + E£ D
+ B. The last inequality implies that there is an assignment of values
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v to all input lines other than the ones feeding p and g, such that A(v)
+ E(v) = 1but D(v) + B(v) = 0. Since D(v) + B(v) = 0, D(v)
= B(v) = 0. Since (6) holds, A(v) = 0, so E(v) = 1. Thus, for all
i, E(v) = 1. Consequently for all i, A;,(v) + E{(v) = 1 < Dy(v) +
B;(v), so there is no i such that D;(v) = 0 and B;(v) = 0. On the other
hand, since D(v) = 0 = B(v), there exist indexes r and s in the
range 1 - - - k such that D,(v) = 0 = By(v). From the remarks above
it follows that D(v) = 1 = B,(v), and that r # s. Since for all i,
A;W)E(v) = Di(v)Bi(v), A/(v) = 0 = A,(v).

For the remainder of this proof we restrict our attention to those
lines that feed G. Such a line is said to have the L — [AD|BE]
property (U — [AD|BE] property) if the XYZ representation of its
lower bound (upper bound) function satisfies either i) or ii);

i) A(v)=1=D() and B(v)=0=E(v)
ii) A(W)=0=D() and B(v)=1=E(v).

Similarly, a line is said to have the L — [AB|DE] property (U ~
[AB|DE] property) if the XYZ representation of its lower bound
(upper bound) function satisfies either (iii) or (iv):

iiiy A(v)=1=B(v) and D(v)=0=E(v)
iv) A(w)=0=B(v) and D(v)=1=E(v).

Note that line r above has the U — [AD|BE] property, while line s
has the U — [AB|DE] property.

It is important to note that if a line has either [4B|BE] property it
cannot have either [4 B| DE] property and vice versa. To see that this
is true note that if J and H are two functions such that J < H, it s
impossible for one function to satisfy one of i) and ii) and for the other
to satisfy one of iii) and iv). Note this includes the special case where
J = H.

Another important characteristic of these properties is that if an
output line of a noninverting gate feeding G has one of these
properties, one of the input lines of that gate must have the same
property. Thus, these properties propagate backwards through
noninverting gates. Since a NOT gate transforms the U — [(AD|BE]
(U - |AB|DEY)) property into the L — {AD|BE] (L — [AB|DEY))
property and vice versa, so do inverting gates that feed G. Thus,
inverting gates preserve the general type of property, but convert U
properties into L properties and vice versa.

We will now show that these properties are inherited as claimed.
Let T be a noninverting gate feeding G. Suppose that the output line
of T has the U — [AD|BE] property. The proofs in all the other
cases are similar and are left as an exercise. Assume that T is an AND
gate with input lines m,, - -, m,. Since T feeds G, the upper bound
functions of the output line and of the input lines satisfy (6)-(10). Let
A, B, C, D, E, and F be the XYZ representation coefficients of the
output line upper bound and A;, B,, C;, D;, E;, F;, be the XYZ
representation coefficients of the upper bounds of the input lines.

Assume first that A(v) = 1 = D(v) and B(v) = 0 = E(v). Then
foralli, A;(v) = 1 = D;(v). Since B(v) = O there is an index j in the
range 1 -+ - n such that Bj(v) = 0. From (8) it follows that E;(v) =
0. Thus, input line j has the U — [AD|BE] property. If originally,
A(v) = 0 = D(v)and B(v) = 1 = E(v), letj be such that D(v) =
0, which forces A(v) = 0 by (8).

. We will now briefly outline how the proof goes in the other cases.

First if T is an OR gate, use (7) instead of (8). If dealing with the
[AD|BE] properties, you use the same equations as for the
[AB|DE] properties. Finally, when dealing with the L properties,
use (2) and (3) instead of (7) and (8).

Now starting at line r and s of gate G trace back paths consisting
only of lines with the [AD|BE] and [AB|DE] properties as far as
possible. Since some input line inherits these properties from an
output line, we can trace these properties back to a primary input or to
the points p or g. Notice that the paths backwards cannot cross
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because no line can have both types of properties. Thus, we have two
disjoint paths. Note also that no primary input not feeding either p or
g has either property since all coefficients in the X YZ representations
of the bounding functions on these lines are equal. Thus, the two
disjoint paths end at points p and q. It is easy to check that point p has
only the L —~ [AD|DE] property while point ¢ has only the L —
[AB|BE] property. Since line r has the U — [ AB|BE] property, the
path from r to g has odd parity. By Definition 1, G is a Class 2 gate,
contradicting the assumption that there were no Class 2 gates in C*.

We conclude this proof by describing the modifications needed for
the cases not discussed above. First, if (7) holds, but (9) fails, you use
[AD|CF] and [4B|DE] properties. Of course, in this case (9), (10),
(4), and (5) are used instead of (7), (8), (2), and (3). Again, if U
satisfied (6)-(10) but L does not satisfy (1)-(5), essentially the same
proof goes through with (1)-(5) switched around and inequalities
reversed. Finally, if G is an OR gate, (2), (4), (7), and (9) are
switched with (3), (5). (8). and (10). ##

The result for Class 1 gates follows in the same manner as the
result for Class 2 gates. This is stated as Theorem 2.

Theorem 2: Let C be a circuit that has reconvergent fan-out. Pick
a minimal reconverging fan-out point and label one reconverging line
P and the other fan-out line q. Assume that C does not contain any
Class | gates. Cut C to get the circuit C* similar to the manner
illustrated in Fig. 3, and compute all lower and upper bound functions
in terms of X, Y, and Z. Then substituting Z for X in every lower

bound function cannot reduce the signal probability of the function -

and substituting Z for X in every upper bound function cannot
increase the signal probability of the function. Thus, the bounds
derived in C* using an independent variable X are correct for the
lines in C.
Proof: This is the same as the proof of Theorem 1, but with
(11)-(20) replacing (1)-(10). #i#
Theorems | and 2 show that the Savir, Ditlow, and Bardell
algorithm is correct.
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