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 1. Introduction

1.1 What is Augmented Reality?

       Augmented Reality (AR) is a growing research area that sprung out of Virtual

Reality (VR). VR systems immerse the user in a completely synthetic environment

thus blocking him out of the real world. In contrast AR systems aim at augmenting

the user’s perception of the world around him, enhancing his performance in the

real world. This augmentation is done by superimposing synthetic elements such

as sound or graphics over a real world environment in real time. Ideally, the user

would not be able to distinguish between real and synthetic elements. Thus AR

supplements reality instead of completely replacing it, as is the case with VR.

A typical AR system consists of the following components:

•  Tracking System

• Display System

• Computing Device

The tracking system is used to calculate the location of the user in reference to his

surroundings. The display system is used to relay to the user the augmented view

of the real world. The computing device does all the necessary computation to

generate the augmented view from the information obtained by the tracking device

and existing knowledge of the user’s surroundings.

1.2 Augmented Reality vs. Virtual Reality

     Virtual Reality systems tend to “fool” the user into believing that he is living in

the virtual environment that is provided to him. In most cases this virtual world

has very few features of the real world, if any at all. The user tolerates or even

adapts to errors in the system. Features of the real world such as laws of physics

that govern time, gravity and material properties may not hold good in such a

system. On the other hand, an Augmented Reality system operates in the real

world. Therefore, all the laws of physics must be taken care of: errors in the
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system can be annoying to the user to the level of being distractive or even

degrading his performance in the real world.

           Milgram et. al. explain the difference between Augmented Reality and

Virtual Reality by describing a Reality-Virtuality Continuum. (See figure1 below).

According to this concept, real and virtual environments lie on opposite ends of

the continuum. The region in between is termed “Mixed Reality” to show that they

contain both real and synthetic elements. Augmented Reality lies near the Real

Environment end, signifying that the environment is mostly real, with a few

synthetic elements overlaid. The authors use the term Augmented Virtuality to

describe a system that is mostly synthetic, with a few features of the real world

added on to the virtual objects. The ultimate aim of an Augmented Reality system

would be to superimpose real and virtual elements in such a way that the user is

unable to distinguish between them. We should bear in mind that this is not to

done in order to fool the user, but to help him perform better in the real world.

1.3 Motivation

      Augmented Reality is a relatively new research field and is fast growing.

Computing devices are getting faster and more compact. For example, the

Microsoft Xbox game console uses an NVidia 300Mhz 3-D Graphics Processing

Unit that is capable of processing 150 Million polygons per second. Another

Real
Environment

Virtual
Environment

Augmented
Reality

Augmented
Virtuality

Mixed Reality

Figure1: The Reality – Virtuality Continuum
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example is the ASUS MyPal A600 Pocket PC – It is a PDA that fits on the palm

of one’s hand, and it has a processor running at a speed of 400MHz.

       While commercial vendors extensively sell VR systems, AR systems are

primarily found in academic and industrial research laboratories. AR systems

currently under development find applications in many realms including medicine,

manufacturing, visualization, entertainment and military training. However, the

systems developed are highly expensive and may cost up to a few tens of

thousands of dollars. This project aims at developing a system that is relatively

inexpensive. For example, MicroVision’s Military HMD (Head Mounted Display)

costs around $10,000; the display device chosen for this project costs a little less

than $1,000.

1.4 Goals of this project

     As stated in section 1.3, the principle aim of this project is to develop a

relatively inexpensive system that incorporates the concept of Augmented Reality.

The system should be able to recognize simple objects (i.e., objects that are simple

to describe geometrically) in a room, such as doors and windows. The objects are

assumed to be static while the user may freely move around. The augmented view

consists of drawing wire frames around the objects to be recognized, and text that

explains to the user which object(s) he is currently viewing.
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2.  System Components

       This section describes the hardware and software components used, and a

general idea as to how the different components work together to form the system.

2.1 Hardware Components

      The system comprises of the following hardware devices:

• QuickCam Home Camera (Logitech): A pc camera to capture the user’s

view. Video manipulation is carried out on each frame captured by the

camera in order to generate the augmented view. The camera has a focusing

range between 3 feet and infinity, and a field of view of 450.

• pciBIRD (Ascension Technology Corporation): A 6 degree-of-freedom DC

magnetic tracker on a pci card. The system consists of one transmitter and

two sensors. The tracker works by having the transmitter generate magnetic

fields by precisely known characteristics. Each sensor measures the

transmitted field vectors at a point in space. Using these measured values, it

is possible to deduce the position and orientation of the sensor relative to

the transmitter. The device has a translation range of 76.2 cm along three

directions (X, Y and Z axes) and is capable of taking up to 105

measurements per second.
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• DELL Dimension 4100 Series Desktop PC: Intel Pentium III

processor @ 1000 MHz, to do the necessary computation.

• “Clip-On” Model CO-1 (The MicroOptical Corporation): A small clip-

on monocular LCD display monitor that can be clipped on to a pair of

ordinary eyeglasses to relay the augmented view to the user. The image

appears in front of the user and serves as a compact version of an

ordinary desktop monitor. (Display format: 320 x 240, 16-bit color,

60Hz refresh rate).

Figure 2: Magnetic tracker- sensor and transmitter
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The camera and sensors would typically be mounted on a hard hat: The

camera and one of the sensors would be fitted to the front side of the hard

hat, while the second sensor is attached to the behind of the hat. The first

sensor indicates the position of the camera while the second sensor serves

as a view reference point. The line segment between these two points is the

direction of view of the user.

Figure 3: Model CO-1 clip-on display monitor

Figure 4: Components mounted on a hard hat
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2.2 Software used

     The code was written in Microsoft VC++ on the Windows2000

platform. The Video for Windows (VFW) API provided by Microsoft

was used to carry out the necessary video capture and video

manipulation operations. Interfacing of the tracking device to the

software was done through the pciBIRD C++ API which contains all

the required libraries to do the same.

2.3 Working of the System

     We assume that the system has predefined knowledge of the objects

to be recognized. Since we are dealing with simple rectangular objects,

all we need to do is store the end points of the rectangle in 3-

dimensional co-ordinates, and the textual description that needs to be

displayed. These values may be stored in a file and read into appropriate

data structures whenever necessary.

      VFW provides for a preview of every frame captured. This allows

for each frame to be modified before it is displayed. Whenever a frame

is captured, the positions of the sensors are noted and the user’s view is

estimated. For each object, we check to see if it is in the user’s view. If

it is, the necessary perspective transformations are applied. The next

section describes these computations in more detail. The wire-frames

are then drawn around each object and the required text is overlaid.

Once this is done, the frame is displayed on the screen.
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3. Calculating the user’s view

3.1 The Viewing Pipeline

         The viewing pipeline describes the different steps involved in calculating the

final view on the screen, given the co-ordinates of an object in the world co-

ordinate system.  The following sub-sections of this section describe each step in

better detail.

View-port transformation

Perspective-transformation

Clipping

Eye-transformation

World Co-ordinates

Eye Co-ordinates

Clipped point/edge in
Eye Co-ordinates

Perspective Co-ordinates
(Viewing Pyramid)

Screen Co-ordinates

Figure 5: The viewing pipeline
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3.2 Transformation from World Co-ordinates to Eye Co-ordinates

In the diagram above X1, Y1 and Z1 represent the axes in the world co-ordinate

system. The origin of the magnetic transmitter forms the origin of our world

system and the sensor readings obtained are in this co-ordinate system. X, Y and Z

represent the eye co-ordinate system. Note that the world system is a right-handed

system while the eye system is left-handed. The eye is always at the center of

projection (xf,yf,zf) and looks at the view reference point  (xa,ya,za). The eye

forms the origin of the eye system, and the line from the eye to the view reference

point (vrp) forms the Z-axis of the eye system. The Z-axis of the eye system is

always perpendicular to the XY plane in the eye system.

The co-ordinates of the end points are stored as 3-dimensional co-ordinates (x,y,z).

Using homogeneous matrix representation, this point may be represented as:

                                   P = [x y z 1].

In order to convert this point into an equivalent point in the eye system co-

ordinates, we take a look at transforming the world co-ordinate system to the eye

co-ordinate system:

• Translate the world system’s origin to the origin of the eye system.

• Shift to a left handed system.

• Rotate by 900 around the X-axis.

Y

(xa, ya, 0)

(xf, yf, 0)

(xa, ya, za)

Z

X1

Z1

Y1

Figure 6: World and Eye Co-ordinate systems

X
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• Rotate about the Y-axis until the Z-axis is above the Z-axis of the eye

system.

• Rotate about the X-axis so that the Z-axis drops down to the Z-axis of the

eye system.

Representing each of these transformations by a 4x 4 matrix, and multiplying them

to obtain he transformation matrix gives us:

EYE = | -cosθ             -sinθ * sinψ            -sinθ ∗ cosψ                    0  |

            |                                                                                                   |

             | sinθ              -cosθ  * sinψ            -cosθ * cosψ                   0  |
            |                                                                                                   |
            | 0                    cosψ                        -sinψ                                0  |
            |                                                                                                   |
            | xf*cosθ         -zf*cosψ +              zf*sinψ+                         1  |
            |  - yf*sinψ       xf*sinθ*sinψ+      xf*sinθ*cosψ+                    |
            |                        yf*cosθ*sinψ        yf*cosθ*cosψ                      |

Here,

       sin θ =(xf-xa)/d1      and           cos θ = (yf-ya)/d1.

Also,

       sin ψ =(zf-za)/d2      and           cos ψ = d1/d2.

Where

d1= ((xf-xa)2+(yf-ya)2)    and          d2= ((xf-xa)2+(yf-ya)2+(zf-za)2)

In other words, we need to multiply P by the matrix EYE to obtain the equivalent

co-ordinates in the eye system.
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3.3 The Screen Co-ordinate system

In converting the object co-ordinates from world to eye co-ordinates, we have

obtained the user’s view of the object. We now need to convert these co-ordinates

to the screen system for display purposes.

          A point in space is projected along a line to the eye where it meets the

virtual screen. The eye and screen boundaries determine the visible region of

space. This is called the viewing pyramid.(See Figure 8 below)

Ey
e

X

Y

Z

Figure 8: Viewing pyramid

P’(x’,y’,z’) P(x,y,z)

Virtual Screen

Eye

Y

Z

X

Figure 7:  Eye and virtual-screen co-ordinates
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The ratio b/d (see figure 9) is called the viewing aperture or just aperture. The

angle θθ  is the field of view. Thus, aperture = tan (θθ/2). [In our case, θ = 450. So,

the aperture would be tan (45/2) = 0.4142 (approximately).]

Normalizing the co-ordinates of the point P that is under consideration

(i.e., 0<=x’, y’<=1), we get

x’=x/(z*a)          and       y’=y/(z*a), where a is the aperture.

At this point, we have converted the point P from 3-dimensional eye co-ordinates

2-dimensional virtual screen co-ordinates.

3.4 View-port Transformation

(Vcx,Vcy)

Vsx
Vsy

Figure 10: Viewing region of actual screen

Y

Z

b
d

θ

screen

Figure 9:  Aperture and field of view
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In order to calculate the actual screen co-ordinates (xs,ys) of the point (x’,y’), we

define the rectangular viewing region by specifying the center  (Vcx,Vcy) and

distances to the top and side of the screen Vsx and Vsy respectively.

Hence we obtain:

xs = Vcx + x’*Vsx                       and

ys = Vcy + y’*Vsy.

3.5 Line Clipping

       Before converting the scene from the eye-system to the screen system, we

need to obtain those portions of the lines (which form the borders of the objects to

be recognized) that lie within the viewing pyramid. In other words, we need to clip

these lines against each of the four faces of the viewing pyramid. These faces form

the planes:

x = z ,   y = z,   x = - z and   y = - z.

      Figure 11 below depicts the algorithm to clip a line (x1, y1, z1) - (x1, y1, z1)

against the x=z plane. Similar procedures are carried out on the rest of the faces of

the viewing pyramid to determine the visible portion(s) of the line.



16

 4. Implementation of the System

      This section describes the software implementation of the system. Some

sample code is provided, and operations regarding video capture, video

manipulation and position tracking are explained. The last sub-section presents a

sample scenario in which the system was tested and the results obtained.

z1 = z1 * aperture
z2 = z2* aperture

x1 <= z1 ?

Yes (Visible)

x2 <= z2 ?

No

Clip point
(x2,y2,z2)

Yes

On to next face

x2 < z2 ?
No (Invisible)

Clip point
(x1,y1,z1)

Yes

Return false

No (Whole line
is Invisible)

Figure 11: The Line Clipping Algorithm
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4.1 Storing the known information of the scene

       As discussed earlier, we need to store the co-ordinates of the objects under

consideration. These co-ordinates were stored in a text file called “Obs.txt”.

The file contains the following information:

• Number of objects in the scene.

• For each object in the scene, the following information should be present:

v An integer representing the type of object: 1=>Rectangle,

2=>Triangle (The system was tested only on rectangular objects, but

having an option for the type of the object would allow the system to

be expanded to include other geometric shapes.)

v The 3-dimensional co-ordinates (x, y, z) of each of the vertices

(which are measured using the magnetic tracking device.)

v A description of the object that is to be displayed.

The co-ordinates are stored in clockwise order. For example, with respect to

the rectangle in figure 12 below, the co-ordinates may be stored in any of the

following orders: <ABCD>, <BCDA>, <CDAB>, <DABC>.  The same holds

for triangular objects.
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This same idea may be expanded to include cuboid objects, as shown below. The

numbers indicate one of the possible ways of the order in which the co-ordinates

of the vertices may be stored.

A

C

B

D

A

B

C

Figure 12: Order in which the co-ordinates of the vertices are stored.

1 2

34

5 6

7

8

Figure13: Possible representation of a cuboid object
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This information is read into an appropriate structure:

struct { int type; //type of object
         point3d thePoints[MAX_POINTS]; //object co-ordinates

 char *description; // textual description that needs to be displayed
}theObjects[MAX_OBJECTS];

4.2 Implementation of the viewing pipeline

The class “EyeStuff” implements the viewing pipeline: It contains all the functions

needed to carry out the required geometrical transformations.

class EyeStuff
{ private:
      double EYE[4][4]; //The EYE matrix

  point3d eye_lo ; //Eye location
  point3d vrp;//View Reference Point

      double vcx, vcy;// Co-ordinates of the center of the screen
      double vsx, vsy;

double apert;// viewing aperture

  public:
      EyeStuff();

  void calc_eye(); // Calculate EYE matrix
  void set_eye_loc(point3d);
  point3d get_eye_loc();
  point3d get_vrp();

      void set_vrp(point3d);
      void set_virtualcenter(double cx, double cy);

 void set_vs(double sx, double sy);
 void perspec(point3d &prev, point3d &curr); //Perspective transformation

      void vu_port(point3d &p ,point3d &curr); //View-port transformation (line)
      void vu_port(point3d &p);

 void perspec(point3d &p); //View-port transformation (point)
 bool clip3d(point3d &p1,point3d &p2); //Clip line segment p1-p2
  point3d trans_EYE(point3d p1); //Eye tranformation

};
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4.3 Video Capture operations

Microsoft Video for Windows (VFW) provides a number of functions for video

capture. The captured frames are stored in .avi format; each frame is captured as a

bitmap, whose format may be selected by the user.

• CapCreateCaptureWindow => Creates a new capture window.

• capGetDriverDescription => Returns the description of a capture driver.

• capDriverConnect =>Connects a capture window to a capture driver.

• capSetCallbackOnFrame =>lets the user to set the function to be called

whenever a frame is captured.

• capSetCallbackOnError =>lets the user to set  the function to be called in

case an  error was encountered.

• capCaptureSetSetup =>Brings up a common dialog to let the user select

capture settings.

• capPreviewRate =>Sets the preview rate, normally set to 15 frames per sec,

as the human eye cannot process more than 15 frames per second.

• capDlgVideoFormat => Brings up a common dialog that lets the user

select the format of the captured frame, depending on what formats are

provided by the driver.

4.4 Bitmap File formats

       A bitmap (.bmp) file is a Device Independent Bitmap (DIB). DIB files have a

standard header that identifies the format, size, color palette (if applicable) of the

bitmapped image.  The header is a BITMAPINFO structure.

typedef struct tagBITMAPINFO {
    BITMAPINFOHEADER    bmiHeader;
    RGBQUAD             bmiColors[1];
} BITMAPINFO;



21

BITMAPINFOHEADER is a structure of the form:

typedef struct tagBITMAPINFOHEADER{
   DWORD  biSize; // bytes required by structure
   LONG   biWidth; //width of bitmap (in pixels)
   LONG   biHeight; //height of bitmap (in pixels)
   WORD   biPlanes; // No of planes for target device (Always =1)
   WORD   biBitCount; //No of bytes per pixel   
   DWORD  biCompression; //type of compression used
   DWORD  biSizeImage;
   LONG   biXPelsPerMeter;
   LONG   biYPelsPerMeter;
   DWORD  biClrUsed;
   DWORD  biClrImportant;
} BITMAPINFOHEADER;

bmiColors [1] is the first entry in an optional color palette or color table of

RGBQUAD data structures.  True color (24 bit RGB) images do not need a color

table.  4 and 8 bit color images use a color table.

typedef struct tagRGBQUAD {
    BYTE    rgbBlue; // Intensity of Blue
    BYTE    rgbGreen; // Intensity of Green
    BYTE    rgbRed; // Intensity of Red
    BYTE    rgbReserved; // Always zero
} RGBQUAD;

When biBitCount = 32, the bitmap has a maximum of 2^32 colors. If the

biCompression member of the BITMAPINFOHEADER is BI_RGB, the

bmiColors member is NULL. Each DWORD in the bitmap array represents the

relative intensities of blue, green, and red, respectively, for a pixel. The high byte

in each DWORD is not used. In our case, we use uncompressed bottom-up

bitmaps, and so the biCompression member is set to BI_RGB.
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The following function was used to set a specified pixel to a specified color, for a

32-bit uncompressed bitmap. (In the implementation of this project, only 32-bit

format at a resolution of 320 x 240 is implemented. This can be extended to

include other formats without much difficulty.)

void mySetPixel(unsigned char *VideoData,int col, int row, int width,int color)
{  //if point is out of bounds, ignore it
   if(col>320 || row>240|| col<0 || row<0) return;
    if(color==1) //RED

{ VideoData[4*(row*width+col)]=0x00; 
             VideoData[4*(row*width+col)+1]=0x00;

  VideoData[4*(row*width+col)+2]=0xFF;
  VideoData[4*(row*width+col)+3]=0x00;
}
if (color==2) //WHITE

    { VideoData[4*(row*width+col)]=0xFF;
  VideoData[4*(row*width+col)+1]=0xFF;
  VideoData[4*(row*width+col)+2]=0xFF;
  VideoData[4*(row*width+col)+3]=0x00;
}

    if (color==3)        // BLUE
    { VideoData[4*(row*width+col)]=0xFF;

  VideoData[4*(row*width+col)+1]=0x00;
  VideoData[4*(row*width+col)+2]=0x00;
  VideoData[4*(row*width+col)+3]=0x00;
}

}

Here, VideoData is a structure containing the RGB values of the pixels of a

captured frame. This is accessible through the frame preview function provided by

VFW.

4.5 The pciBIRD API

Commands are sent and responses are obtained from the tracking device through

the pciBIRD API provided by Ascension Technology Corporation. Following is a

list of functions that are of significance:
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• InitializeBIRDSystem – Causes the pciBIRD driver to reset all PCIBIRD

boards in the system, obtain and build a database of information containing

number of sensors, transmitters etc.

• SetSensorParameter – Used to set various parameters of the sensor,

including the data format type, frequency of measurement,etc. The device is

capable of presenting data in the form of position, or angles or both. For

this project, the data format was set to “position only”.

• GetAsynchronousRecord – When invoked reads and returns the last data

record from the last computation cycle of the sensor.

• GetBIRDError – Each of the above mentioned functions returns an integer

value representing an error code. If the return value is 0, it means the

function was successful. If any other return value is encountered, the

GetBIRDError method can be used to get an integer that returns the oldest

error message in the error queue. The GetErrorText method can then be

used to obtain a textual description of the error.

4.6 Putting it all together

4.6.1 Initializing required data and devices:

• The first step is to read the number of objects in the scene, their co-

ordinates and description as explained in section 4.1 above.

• Create a capture window, and connect to a capture driver.

• Initialize the pciBIRD system and set the sensor data format to

“position only”.

• Set the callback functions: Set the callback in the case of a frame

capture to FrameProc(). This means that all frame manipulation will

have to be handled by this function.

• Initialize the settings of the video capture device (i.e., encoding,

resolution, etc)
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 4.6.2 Processing each Frame: The FrameProc() function

LRESULT CALLBACK FrameProc(HWND hcap, LPVIDEOHDR
lpVHdr)
{

HDC hdc;

RECT *lpRect=(RECT*)malloc(sizeof(RECT));
lpRect->left=0;
lpRect->top=250;
lpRect->right=320;
lpRect->bottom=300;
count++;

        BITMAPINFO bm;
unsigned char *VideoData;
VideoData=(unsigned char*)malloc(sizeof(unsigned char));
VideoData=lpVHdr->lpData;

    int bmsize=capGetVideoFormatSize(hcap);

if(capGetVideoFormat(hcap,&bm,bmsize)==0)
    MessageBox(hcap,"bmsize=0!","Error",MB_OK);

         BITMAPINFOHEADER bmH=bm.bmiHeader;
        double bpp=bmH.biBitCount /8.0; //bytes per pixel;
       int img_size=(int)bmH.biHeight * bmH.biWidth * bpp;
     if(img_size==0 || bmH.biCompression != BI_RGB)
{  MessageBox(hcap,"Image Size =0; RLE or JPEG compression possibly
used","ERROR",MB_OK);
  return (LRESULT) true;

}

    if(img_size!=lpVHdr->dwBytesUsed)
{ MessageBox(hcap,"Image Size and Buffer Size do not
match","ERROR",MB_OK);
  return (LRESULT) true;

}

//bmH.biWidth=320 [-> 320 columns(x) -> 240 rows(y)]
  // char myZeroRGBDword[4];
int i=0,j=0,k=0,ln=0;
 int err=0;
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double dbuff[3];
point3d sensor1;
double temp;
 switch (bmH.biBitCount)
{ case 32 :  // bmiColors=NULL, each DWORD in the bitmap array holds
            // relative intensities of R,G,B for each pixel
            E.set_virtualcenter(bmH.biWidth/2 , bmH.biHeight/2);
            E.set_vs(bmH.biWidth , bmH.biHeight);

err=GetAsynchronousRecord(0,dbuff,sizeof(SHORT_POSITION_ANGL
ES_RECORD));

err=GetAsynchronousRecord(0,dbuff,sizeof(DOUBLE_POSITION_REC
ORD));
  for(i=0;i<3;i++)
  {    temp=dbuff[i];
       switch(i)
       { case 0: sensor1.x=temp;

             break;
         case 1: sensor1.y=temp;

             break;
         case 2: sensor1.z=temp;

             break;
}

  }
 E.set_eye_loc(sensor1);
 E.calc_eye();

// Cross hair to help calibrate view-reference point
Drawline(VideoData,bmH.biWidth*3/8,bmH.biHeight/2,bmH.biWi
dth*5/8,bmH.biHeight/2,bmH.biWidth,2);
Drawline(VideoData,bmH.biWidth/2,bmH.biHeight*3/8,bmH.biWi
dth/2,bmH.biHeight*5/8,bmH.biWidth,2);

ProcessObjects(hcap,VideoData,bmH.biWidth);
 break;

  default : MessageBox(hcap,"Sorry.This format is not supported at this
time.","YAAAAAAAAAAARGH!!!",MB_OK);

        exit(0);
        break;

}
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InvalidateRect(GetParent(hcap),lpRect,true); // Required in order
to post the WM_PAINT message to modify the video frame

hdc=GetDC(hcap);

SetDIBitsToDevice(hdc,0,0,bmH.biWidth,bmH.biHeight,0,bmH.bi
Height,0,bmH.biHeight,VideoData,&bm,DIB_RGB_COLORS);

 ReleaseDC(hcap,hdc);
return (LRESULT) true ;}

The above function is invoked by Windows whenever a frame is captured;

the frame is not displayed unless this function states that the frame is to be

displayed. (This is done using the SetDIBitsToDevice() function.)

The following steps are executed by the FrameProc()  function:

• Obtain information about the type of encoding used

• Note readings from the sensors and set the eye location and the vrp

values to these readings.

• Invoke the ProcessObjects() function, which checks if each object

is in the scene, and if it is, calculate the user’s view of that object.

The ProcessObjects() function is as follows:

void ProcessObjects(HWND hcap,unsigned char*VideoData,int width)
{ int i=0;
  bool visible;
  for(;i<NUM_OBJECTS;i++)
  {

visible=false;
switch(theObjects[i].type)
{ case 0 : break;
  case1:ProcessEdge(hcap,VideoData,TheObjects[i].thePoints[0],

theObjects[i].thePoints[1],width,visible,theObjects[i].description);

ProcessEdge(hcap,VideoData,theObjects[i].thePoints[1],theObjects[i].the
Points[2],width,visible,theObjects[i].description);
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ProcessEdge(hcap,VideoData,theObjects[i].thePoints[2],theObjects[i].the
Points[3],width,visible,theObjects[i].description);

ProcessEdge(hcap,VideoData,theObjects[i].thePoints[3],
theObjects[i].thePoints[0],width,visible,theObjects[i].description);

       break;
             case2:ProcessEdge(hcap,VideoData, theObjects[i].thePoints[0],
theObjects[i].thePoints[1],width,visible,theObjects[i].description);

 ProcessEdge(hcap,VideoData,theObjects[i].thePoints[1],
theObjects[i].thePoints[2],width,visible,theObjects[i].description);

ProcessEdge(hcap,VideoData,theObjects[i].thePoints[2],
theObjects[i].thePoints[0],width,visible,theObjects[i].description);
  break;

}
  }
}

The ProcessEdge() function calculates if each edge of the object is visible

and if so, invokes the functions for processing of  the viewing pipeline

which was described in section 3. It invokes the ProcessEdge() function for

each edge of the object.

void ProcessEdge(HWND hcap,unsigned char *VideoData, point3d p1,
point3d p2,int width, bool &visible, char desc[100])
{   bool now=false;

p1=E.trans_EYE(p1); // Convert p1 to Eye System
p2=E.trans_EYE(p2); // Convert p2 to Eye System
if(E.clip3d(p1,p2)); // Clip edge (p1,p2)
{ E.perspec(p1,p2); // Perspective transformation
  E.vu_port(p1,p2); // View port transformation
  Drawline(VideoData,p1.x,p1.y,p2.x,p2.y,width,1);
  now=true;
}

    if ( visible==false && now==true)
{ WriteText(p1,p2,desc);
  visible=now;
}

   }
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Drawline() is a function that implements a simple line drawing algorithm between

two 2-dimensional points p1 and p2, by setting each pixel on the line via the

mySetPixel() function.

4.7 Experimental Results

      Though the proposed system was intended to have two sensors, only one was

used for test purposes. This sensor was used to return the position of the eye. The

system was tested by keeping the camera stationary and noting the sensor

measurement that corresponded to the point that was projected on to the center of

the screen. This point was set as the view reference point. This was carried out for

different positions of the camera, noting and setting the view reference point in

each case. One of the sample scenarios consisted of just one object: A poster

against a blue background. The information was stored in the text file as follows:

1
1
9.3 20.8 27.2
15.7 19.6 25.8
17.1 20 17.
9.5 19.7 16.7
< A Poster>

This may be interpreted as an environment having one recognizable object, which

is a rectangle and is described as “A Poster”. Figures 14 and 15 below depict two

screen shots that portray the results obtained for two different positions of the

camera. The white cross-hairs were drawn as a matter of convenience to measure

the position of the view reference point, as it is a known fact that the view

reference point is always projected on to the center of the screen.
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As obvious from the screen shots, the results are erroneous - The

wireframes do not match with the boundaries of the images of the object. The

following factors may have contributed to such results:

Figure 14: Sample Screen Shot 1

Figure 15: Sample Screen Shot 2
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• Effect of electrical/magnetic devices in the vicinity: Tracking is

based on the measurement of a magnetic field generated by the

transmitter. This field is affected by the presence of electrical and

magnetic devices such as the pc-monitor, wires carrying electricity

etc. This produces errors in the measurement of the sensor position.

For example, when the sensor was moved along a line parallel to the

X-axis, one would expect the Y co-ordinate readings to be the same.

However, this was not what happened when the system was tested.

The readings for the Y co-ordinates seemed to change. When the

transmitter was placed within 1ft. of the pc-monitor, the error

observed was much greater: The difference of the Y co-ordinate

readings of two points at a physical distance of roughly 6 inches

from each other would sometimes be as bad as 10 inches, when we

would have liked it to be close to zero.

• Tracking device does not accurately convey direction (sign) of co-

ordinates: The tracking device calculates the magnitude of the

magnetic field at the position of the sensor; this field is symmetrical

around the X, Y, and Z-axes, and hence there is no guarantee that the

device will return accurate signs on the co-ordinates. In most cases,

it was observed that the readings of the X co-ordinate values were

positive on both sides of the X-axis.

• Assumptions in our calculation of the user’s view: The one

assumption that is made in the theory of the viewing pipeline is that

the user cannot tilt his head from side to side. Since it is hard to keep

the camera from tilting, this is hard to achieve.

• Field of view of the camera: The vendors of the camera claim that

the field of view of the camera is 450 (or ππ /4 radians). Using this

value within the code produced a larger error in generating the

wireframes around the objects. Decreasing the angle (up to a certain



31

point) seemed to improve the results obtained. The actual value of

the aperture used in the above mentioned scenario was ππ /11 radians.

5. Conclusion and Future Work

     This project explored the task of developing a cost-effective system that could

be used to recognize simple objects and provide some information regarding those

objects to the user. Giving higher priority to cost effectiveness led to the selection

of a magnetic tracking device for this project. This turned out to be the cause of a

lot of problems. The readings obtained were not accurate and would be distorted

by the presence of electro-magnetic devices and metallic objects in the vicinity.

This would definitely prove to be impractical in a real-life situation, as we cannot

expect a real world environment to be devoid of objects that are sensitive to

magnetic or electrical fields. Besides, the range in which the device works is

roughly a sphere of 3-feet radius. Tracking devices based on Infra-red are

available. These are not affected by electromagnetic signals or sound waves. E.g.:

The HiBall-3100, developed at UNC is available commercially nowadays. It has a

resolution of better than 0.2mm (angular resolution is better than 0.01 degrees) and

has an operating range varying from as low as 144 sq. ft. and is scalable to over

1600 sq. ft.

       The display device used was not a see-through device - it was just a very

small PC monitor that could be mounted on a pair of eyeglasses. This proved to be

a mild distraction whenever used, as some parts of the real world scene would be

partly obstructed. See-through displays that are commercially available nowadays

seem to be very expensive. We can only hope that they get cheaper in the future.

        Augmented Reality is a fast growing field. Though it is not yet ready for the

commercial world yet, a lot of research is being done in this field. As the years

advance, we may expect commercial tracking and display devices to be available

more easily in the future, and we may expect them to perform better and cost
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lesser than they do now. We may expect to see many devices based on Augmented

Reality used extensively in day-to-day life.
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