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Abstract. This paper studies certain types of join and meet-irreducibles called coprimes and primes. These
elements can be used to characterize certain types of lattices. For example, a lattice is distributive if and
only if every join-irreducible is coprime. Similarly, a lattice is meet-pseudocomplemented if and only if
each atom is coprime. Furthermore, these elements naturally decompose lattices into sublattices so that
often properties of the original lattice can be deduced from properties of the sublattice. Not every lattice
has primes and coprimes. This paper shows that lattices which are “long enough” must have primes and
coprimes and that these elements and the resulting decompositions can be used to study such lattices.

The length of every finite lattice is bounded above by the minimum of the number of meet-irreducibles
(meet-rank) and the number of join-irreducibles (join-rank) that it has. This paper studies lattices for
which length = join-rank or length = meet-rank. These are called p-extremal lattices and they have
interesting decompositions and properties. For example, ranked, p-extremal lattices are either lower
locally distributive (join-rank = length), upper locally distributive (meet-rank = length) or distributive
(join-rank = meet-rank = length). In the absence of the Jordan-Dedekind chain condition, p-extremal
lattices still have many interesting properties. Of special interest are the lattices that satisfy both
equalities. Such lattices are called extremal; this class includes distributive lattices and the associativity
lattices of Tamari. Even though they have interesting decompositions, extremal lattices cannot be
characterized algebraically since any finite lattice can be embedded as a subinterval into an extremal
lattice. This paper shows how prime and coprime elements, and the poset of irreducibles can be used to
analyze p-extremal and other types of lattices.

The results presented in this paper are used to deduce many key properties of the Tamari lattices.
These lattices behave much like distributive lattices even though they violate the Jordan-Dedekind chain
condition very strongly having maximal chains that vary in length from N —1 to N(N —1)/2 where N
is a parameter used in the construction of these lattices.
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1. Introduction

This paper is motivated by the combinatorial characterization of distributive lattices
found in ([1] Theorem 4.6) and [17]: a finite lattice is distributive if and only if it
satisfies the Jordan—Dedekind chain condition and the length of any maximal chain
is equal to the number of join-irreducibles and equal to the number of meet-
irreducibles. This result is generalized in ([1] Theorem 5.5) and [14] ([20]) to
characterize locally distributive lattices. The above results make no statements
about lattices that do not satisfy the Jordan—Dedekind chain condition.
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The concept of a prime ideal in a lattice is widely known ([5, 6]). Less well
known, but closely related are the concepts of coprime and prime elements in a
lattice. These are special types of join-irreducibles and meet-irreducibles that have
been used by a variety of authors ([3, 10, 11] [25], p. 51, [26]). Finite distributive
lattices are characterized by the property that every join-irreducible is coprime, or
dually that every meet-irreducible is prime. Finite meet-pseudocomplemented (join-
pseudocomplemented) lattices are characterized by the property that every atom
(coatom) is coprime (prime). Coprime/prime pairs permit the decomposition of a
lattice into a disjoint union of two lattices related by a join-homomorphism/meet-
homomorphism pair. The poset of completely prime elements in a complete lattice
is isomorphic to the poset of completely coprime elements. This result generalizes
the result that in a distributive lattice the poset of join-irreducibles is isomorphic to
the poset of meet-irreducibles.

This paper introduces three classes of finite lattices that have primes and
coprimes: join-extremal lattices, meet-extremal lattices and extremal lattices. Join-
extremal lattices are lattices whose length is equal to the number of join-irreducibles
in the lattice. Meet-extremal lattices are defined dually. Finally, extremal lattices are
those lattices that are both join-extremal and meet-extremal. These three classes of
lattices have coprime/prime decompositions where one of the factors is of the same
type as the original lattice.

These three classes of lattices will be collectively called p-extremal lattices.
P-extremal lattices include distributive lattices, locally distribututive lattices, and
Tamari Associativity lattices (see Section 7) as special cases.

P-extremal lattices can be characterized by their posets of irreducibles. This
characterization shows that arbitrary finite lattices can be embedded into finite
extremal lattices, so there are no algebraic characterizations of p-extremal lattices.
Nevertheless, p-extremal lattices have many interesting properties. These ideas also
lead to interesting decompositions of distributive and locally distributive lattices
into two sublattices.

The above results provide insight into the structure of the Tamari Associa-
tivity lattices, 7,, which consist of all possible parenthesizations of (n + 1)
factors. T, is a complemented, pseudocomplemented, semidistributive, extremal
lattice having length n(n —1)/2, but a shortest maximal chain of length n — 1.
Furthermore, T, _, is a strong retract of T, and a sublattice of its complement
in T,

ne

2. Preliminaries

Some of the results in this paper can be generalized to infinite lattices such as
complete lattices or lattices with different types of chain conditions. This paper
discusses some of these generalizations, but the primary focus is on finite lattices.
To avoid trivialities, we assume that unless otherwise noted all lattices have at least
two elements. All terms undefined in this paper can be found in [6].
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DEFINITION 1. A completely join-irreducible element x of a lattice L is .an
element such that x =sup S implies that x € S. A completely meet-irreducible
element x of a lattice L is an element such that x = inf § implies tt.la.t X € S. .
The join-rank of a lattice L, denoted by jr(L) is the number of JOln-lrred901ble
elements in L. Similarly, the meet-rank of a lattice L, denoted by mr(L) is the
number of meet-irreducible elements in L. ]

NOTATION 1. Let L be a lattice and x e L. J(L) (M(L)) denotes the set of
all join-irreducible (meet-irreducible) elements of L, and J(x) (M(x)) denotes

{jeJL)|j<x} ({meL m>x}) ]
The proof of the following simple lemma is left to the reader.

LEMMA 1. Let L be a lattice of finite length. For each x € L, x = sup J(x) and
x = inf M(x). Also, length (L) < |J(L)}, [M(L)]. n

One goal of this paper is to characterize the cases where length(L) = |71 or |M|. Since
lattices satisfying one or the other of these equalities are as long as possible for the
given join-rank or meet-rank, the names join-extremal. and meet-extremal are
appropriate. As noted in the introduction, p-extremal lattices have .b'een completely
characterized in the presence of the Jordan—Dedekind chain condmon.. .

A key tool for obtaining the results in this paper is the poset of irreducibles
introduced in [17] (see [19] and [21]). For finite lattices, some key facts are
summarized below. The dual of the poset of irreducibles is used by the Darmstadt

school and called a context (see [27]).

DEFINITION 2. (a) By a bipartite directed graph (bidigraph), D, we mean a triple
(X, Y, Arcs) where X and Y are sets and Arcs< XxY If Sc€X, OuS) =
{y € Y| 3x €S such that (x, y) € Arcs}. If T< Y, the In(T) = {x € X |3y € T such
that (x, y) € Arcs}. For singleton sets we write Ou(x) rather than Out{x}) and In( y)
rather than In({y}). We will write Arcs(D), X(D), Y(D) if necessary to reduce

ambiguity. . -
(b) Let L be a finite lattice. The poset of irreducibles of L, P(L) is the bidigraph
(J(L), M(L), Arcs) where (j, m) € Arcs if and only if j £ m in L. |

THEOREM 1. ([19] Theorems 6, 15). Let L be a finite lattice and P(L) its poset of
irreducibles. Let T(L) = {0u(S)|S = J(L)}. T(L) is a lattice when ordered by set
inclusion, and in T(L) join corresponds to union. The map f: L —>I'(L) given by
f(x) = Ou(J(x)) is a lattice isomorphism. Also, the group of the bidigraph autc.Jmor-
phisms of P(L) is isomorphic to the group of lattice automorphisms of I“(.L). Finally,
the disjoint components of P(L) are isomorphic to the posets of irreducibles of the
Cartesian factors of L. |
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Fig. 1. An example of the poset of irreducibles.

THEOREM 2. ([19] Theorem 9). Les D
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‘ if and
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(ii) For all y e
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3. Coprime/Prime Decompositions of Lattices

DEFINITION 3. Let L be a lattice and a be in L. a # I'is called prime if for all x, y
in L, x A y < aimplies that x <aory<a. An element a is called completely prime
if whenever inf § < a, there exists x € S such that x <a. Coprime and completely
coprime are defined dually.

Let L be a lattice with bounds O and I. An element p € L is said to have a
meet -pseudocomplement ( join-pseudocomplement) iff there exists an element p, (p*)
suchthatVge L,gnp=0(gvp=1D)iff g<p, (g >p*). A lattice is said to be meet-
pseudocomplemented ( join -pseudocomplemented) iff every element has a meet-pseudo-
complement (join-psuedocomplement). Following [8], we will call a lattice pseudo-
complemented if it is both meet-pseudocomplemented and join-pseudocomplemented.

A lattice, L is said to be meet-semidistributive ( Jjoin-semidistributive) iff for all
a,b,ceL,a/\b=a/\c(avb=avc)impliesa/\(bvc)=a/\b(av(b/\c) =

a v b). A lattice is semidistributive iff it is both meet-semidistributive and join-

semidistributive. [ ]

For lattices of finite length there is no difference between prime and completely
prime elements, or between coprime and completely coprime elements. The proof of
the following simple result is left to the reader.

THEOREM 4. If a is (completely) prime in L then a is (completely) meet-irreducible.
If a is (completely coprime in L then a is (completely) join-irreducible. An element a

of L is prime iff (a) is a prime ideal. ]

REMARK 2. For finite lattices meet-semidistributivity implies meet-pseudocom-
plemention and dually. Also, Definition 3 differs from the definition in ([25] p. 51)
in that the terms prime and coprime are used instead of meet-prime and join-prinie,
and that primes are #17 and coprimes are #O.

In a Cartesian product of complete lattices, the completely coprime (prime)
elements are those having one component completely coprime (prime) while the

other components are O (I).
One can characterize the coprime elements (and dually the prime elements) in

terms of the poset of irreducibles as follows. j € J(L) is coprime iff 3m € M(L) such
that m € Ou(j) and V)’ € J(L), m € Ou(j’) implies that Ou( j) < Ou(j"). This proof
is left to the reader.

The modular lattice M
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shows that it is possible to have join-irreducibles that are not coprime and
meet-irreducibles that are not prime. ]

The following result shows that primes and coprimes can be used to characterize
finite distributive lattices and pseudocomplemented lattices. Theorem together

with Remark 2 provide a simple test that can determine whether a given finite
lattice is pseudocomplemented.

THEOREM 5. (a) Let L be a lattice such that every element is the Join of
Join-irreducibles and the meet of meet-irreducibles, then the
(1) Every join-irreducible is coprime.
(ii) Every meet-irreducible is prime.
(iti) L is distributive.
(b) A finite lattice is meet-pseudocomplemented iff’ each atom is coprime.
() A finite lattice is Join-pseudocomplemented iff each coatom is prime.
Proof. (a) This can be proved using the ideas in ([6] p. 59; Theorem 3).

Variations of this theorem have been proved by ([2] Theorem 2) and (26}
Theorem 5).

Jollowing are equivalent.

(b) & (¢) ([8] Theorem 3.3) shows that a lattice is meet-pseudocomplemented iff
each atom, q, has a meet-pseudocomplement, a,. The result follows if we show that
an atom has a meet-pseudocomplement iff it is coprime.

If @ has a meet-pseudocomplement, a is coprime. Otherwise, we would have
a<bhve butagband a & cSince ais an atom, a A b =g A ¢ = 0. This would
imply that b, ¢ < a,, whence b v ¢ < a,and O=(bve)raa=a. Conversely, if a
is coprime, let a, = \{beL |a &b}, Since a is coprime, a £a,, whence
ana,=0.1fanb=0,a¢bandb <a,. The proof of (c) is dual. |

Completely coprime and completely prime elements permit a lattice to be decom-

posed into two disjoint lattices. The proof of the following theorem is left as an
exercise.

THEOREM 6. Ler L be a complete lattice. Then the Jollowing are equivalent.
(1) L is the disjoint union of 4 and B where A and B are complete sublattices of L
such that A is closed from above and B is closed from below.
(i) L contains a completely coprime element, a.
(ii} L contains a completely prime element, b. |

The author is indebted to Curtis Greene for suggesting the following corollary.

COROLLARY. Let L be a complete lattice, C(P) the poset of complete coprimes
(primes) in L with the ordering induced by L. Then C and P are isomorphic posets.

Proof. Let a: C > L be given by a(c)=sup{yeL|ypc) Itis easy to see that
a(c) is completely prime for all ¢ e C. Thus, @ maps from C into P. Dually, let
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. 1"1 € L F M It‘ 15 eas) to see [hdt boul o a“d ﬂ
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Thef)rem 6 .c and a(c) partition L. Thus, either B(a(.c)) < afc) or ﬂ(a(;)) /whence
first case c’an’t happen since a(c) is completely prime, so, B(a(c)) = ¢,

]
Bla(c)) = c.

DEFINITION 4. A decomposition of the type de'scribedbin TI]::::CT =6 i|rslfc/aj4llle:linz:i
complete coprime [prime decompositi.on. T.he pal'r (a, ) v:j e eamont

= B is called the complete coprime[prime pair assoclated with oo
fion.st?;le mappings f: 4 — B given by f(x)=x nband f: B—>A given by g .
a v x are called the decomposition maps.

i i i here is a
mplete coprime then t
3. Theorem 6 shows that if a is a co prir ;
REMlttl: I1()rime b such that L = A U B where 4 and B are disjoint sublattices of L
com .
andz ={xelL|x>a} while B={xelL |.x < b}, and vice ver.sz;d om0
In finite lattices, every coprime/prime pair (a, b).:las an ;sts;]):;aj e e 2
if j i joint-irreducible suc , > a.
b in P(L). Furthermore, if j is any )o ¢
Dually( if m is any meet-irreducible such that m #a then b >m.

T ' O € tand‘n

Algcb alc tOpOlOngtS ha (4] fOund the C ncept Of a retraCt us ful n undeIS g

1he (0] ()]() 1C l tr ture ()i ()])'ec . I S conce t keS sense 1or la

p ts hl p ma 1 l ttices a]ld
t g ai structu

prOVIdCS an alt.e[ native Way Of plCtlll lng COprlme/pI 1me deCOIIlpOSltIOIlS.

i 1 f a lattice L if there are lattice

5. A lattice K i1s a retract o . ' . .
?EFIE(I;?gil:ms a:K—L and B: L — K such that Bo 1s the lde.ntxty on hK.mli1 1:
c:lll:z)i a strr)ong retract of L if «(K) is a subinterval of L. If we require that the map

i retract and
be isotone rather than lattice homomorphisms we use the terms order

|
strong order retract (see [23]).

’ 3, p
The following lemma follows from Schwann’s Lemma ([6] p- 73 and Lemma 3, p
82).

LEMMA 2. Let L be a complete lattice having a complete cqprime /prir;e d;cobrz;zz;
. : . . —_
sition AU B. Let a and b be the associated pair and let f: A - Bandg:
] true.

osition maps. Then the following are ' 5 ure
dec{zri')zpf is inf-preserving, g is sup-preserving and both are isotone. Both A and B a

order-retracts of L. o

(ii) For all yed, y=f(y) and g(f(y) <. For all xeB, x<g(x)

) = x. = g(x).
(i) {p(ogr();” y e A, f@(f() =(p), and for all x € B, g(f(g(x))) = 8(x)
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THEOREM 8. (a)

chain, C,, is q Strong retract of L. [
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(b) Suppose L is a complete lattice with a coprime [prime decomposition and
decomposition maps f, g. Suppose further that f (g) is a surjective lattice homomor-
phism. Then B (A) is a strong retract of L. If in addition g (f) is also a lattice
homomorphism then B (A) is a retract of A (B).

Proof. (a) If L has a coprime/prime decomposition with coprime/prime pair
(a, b) let a: C,— L be given by a(0) =5 and a(/) =a v b and B: L — C, be given
by B(x) = O for x € B and p(x) = I for x € A. It is easy to check that o and f are
Jattice homomorphisms and that fo is the identity on C,.

Conversely, suppose that C, is a retract of L and B preserves arbitrary sups and
infs. Let A =p"'(/) and B =p"'(0). It is easy to see that A4 and B satisfy the
conditions of Theorem 6.

(b) Let (a, b) be the coprime/prime pair associated with A4 and B. It is clear that
B is a subinterval of L and that a can be taken as the inclusion map. Define
B:L—B by f(x)=x if xe B and f(x) =f(x) if xe 4. It is clear that fa is the
identity on B so we need only show that f is a lattice homomorphism. Let x, y € L
and consider B(x v y). If x,y € B then B(x v y) =x vy =p(x) v B(y), If x,ye
A then B(x v y) =f(x vy)=f(x) vf(y) =p(x) v B(y) since f is a homomor-
phism. The only case left to consider is when xe€B and y e A. Here
Bx vy)=fx vy)=fx vavy) =f(gx) vy Since f'is a lattice homomorphism
f(g(x) v y) =f(g(x) v f(y) =x v f(y) = B(x) v B(y) using Lemma 2(iv).

It remains to show that B preserves meets. If x,y €A, then B(x Ay) =
S AY) =f() Af(9) =Bx) A B(y). If x,y€p, then Blx Ay)=x Ay =px) A
B(y). Thus, we may assume that xe B and y € 4. Then Bx Ay)=x Ay =
x Ay Ab=xAf(y)=PBx) A B(Y)

If g is a lattice homomorphism, then from Lemma 2(iv) it is injective and
f(g(x)) = x for all x € B. Thus, B is a retract of 4. [ ]

REMARK 5. The one element lattice is a strong retract of every lattice, so in view
of Theorem 8 the condition that a lattice has a prime/coprime decomposition is not
an overly restrictive condition. We note that in Theorem 8(b) even if fis a lattice
homomorphism, g need not be a lattice homomorphism. Figure 3 shows a lattice for
which f is a surjective lattice homomorphism but g is not a lattice homomorphism.

The properties of being retracts or strong retracts are transitive in the sense that
if A is a (strong) retract of B, and B is a (strong) retract of C, then A is a (strong)
retract of C.

Coprime/prime decompositions can be used to prove that a lattice is comple-
mented. The first part of Theorem 9 below appears in ([25] Theorem 15; p. 51), and
the remainder is left as an exercise for the reader.

THEOREM 9. Let L be a complemented lattice. Every coprime in L is an atom
(covers O) and every prime is a coatom (covered by I). Further, if a,beL are a
coprime and prime respectively such that a £ b then a and b are complements. In such
cases, the complement of any element x < b is >a and vice versa. |
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The following theorem provides a m
tions to prove that g lattice is complemented

C/\y=(b/\y’)Ay:bA(y'Ay):bAa—
(avy)=(c Va) vy =g(f(y) Vy=y'v -

Let x € B and Iet ¢ be the complemen}t)i_
the complement of x inL.cvy =(c va) :
Also, cAag<x<gh, so CAx<a/\b=0vx

0.'On the other hand, c vy =¢
I'since &f(y)) =y by Lemma 2(v)
A of g(x). We will show that ¢ is'
=cveg)=Lcax<e Aglx) =a.

]

EXAMPLE 2. A sim

ple applicati
complemented assumi p on of Theorem 10 proves that Bool(n + 1) is

ng that Bool(n) is complemented.

4. Extremal Lattices

s that n : . in terms of their posets of i i
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€, so only

combinatorial characterjzat;
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. ssible. The fi i
primary results. . p e following theorem i
For the remainder of the paper, all lattices are ass ccioﬁmams the
’ umed finite.

This section ch i
aracterizes extr i
It show emal lattices
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(i)

Fig. 4. Two lattices illustrating the limits of Theorem 10.

THEOREM 11. Let L be a finite lattice and P(L) its poset of irreducibles. Then L
is meet-extremal with n meet-irreducibles iff one can number the meet-irreducibles
from | to n (m;,m,,...,m,) and the join-irreducibles from 1 to p (p=n)
(JisJas - - - »Jyp) such that for i =1...n (j;m;) is an arc in P(L) and if (j;, m,) is an
arc in P(L), then q <i. We leave stating the dual to the reader.

Proof. Necessity: Consider a chain, C =c¢y<c¢; <''*<c,, of length n in L.
Consider the corresponding chain in I'(L). Every element in I'(L) is a subset of
M(L) and hence can contain at most » elements. This means that ¢; has exactly i
elements in its representation in I'(L). Let m; be the unique element in the
representation of ¢; that is not in the répresentation of ¢;_,. Let j; be a join-
irreducible such that ¢;_, v j; = ¢;. First, m; is in Ou(j;). Second, if (j;, m,) is an arc
in P(L) then ¢ < i since ¢; is represented by the set {m, m,, ..., m;} in T'(L).

Sufficiency: By Lemma 1 length(L) <|M(L)|=n. Consider the chain in T'(L)
formed by Ou({ }) = Ou(j,) = Ou({j,jo}) =+ < Oul{ji.jis - - - »jn}) Which has
length n since Ou({j,,...,j}) ={m,...,m}. [ ]

COROLLARY. Let L be meet-extremal and T'(L) numbered as in Theorem 11. Let
jeJ(L) and q=max{i|m, e Ou(j)}. Then j is coprime iff Vj;€J(L), m, €
Ou( j;) implies that Ou( j) < Ou(j;). In this case, ( j, m,) is a coprime [prime pair. The
dual result holds for join-extremal lattices.

Proof. Sufficiency was discussed in Remark 2 so we need only prove necessity.
Suppose that j is coprime and m, € Ou(j;) but Ou(j) & Ou(j;). It follows that
J<sup({ji |k <q and m, e Ou(H}u{j}), but j&x for xe{j|k<g and
m, € Ou( j)} w{j;}, which contradicts the fact that j is coprime.

It remains to show that (j, m,) is a coprime/prime pair. If j is a coprime, then the
corresponding prime is p =\/{a€L|a #/}. Since L is a finite lattice, p =
V{eeL |« #jand « € J(L)}. From before, « € J(L), « #jiff m, ¢ Ou(x) iff & <my,.
Also, m, =\/{aeJ(L) |a <m,}, so p=m,. [ ]
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TH/EORFM 12. If L is a Join-extremal lattice then ¥x € L, h(x) = |J(x)|, where h(x)
is the height of x. If L is a meet-extremal lattice then Vx € L, d(x) = |1;/[(x)| where |

d(x) is the depth of x.
Proof. The Qroof for the join-extremal case is as follows. Since L, =
]{ e)netf],(ILy <<x} is a sublattice of L and J(L,) =J(x), it follows that h(x)2 =
.g>f(,2}(:)||‘)](¥]l{ Represent J(x) as {j{-(,), Jr@ys - - s Jrueop } Where f(1) > f(2) >
A ,f l. ;orem 1]' shows th?t Jran <Jray Vi < <Jry VU Vg
it of lengt |7(x)| since myq, is in the representation ofjf(,) VoV :)Irl)
(L) but not in the representation of j,;, v+ v jr;_ . Thus, A(x) = ()| v n

COR(')LLA.RY 1. A lattice L is join-extremal iff for all x € L, h(x) = |J(x)|. Duall

a lattice L is meet-extremal iff for all x € L, d(x) = [M(x)| . ”

. ero)of_. .I]f L is join-extremal, h(x) = |J(x)| from Theorem 12. On the other hand
= [J(x)| we have length(L) = h(I) = |J(I)| = |J(L)| so L is join-extremal. I’

SS;I{[(,)L~L?R-Y 2. If L is join-extremal, then every ideal is a join-extremal lattice

o (;t ,fsz tzsj‘;nle;et—extremal, then every dual ideal is a meet-extremal lattice .
of. Le e an ideal of L and let x = su i \

‘ b p M. It is easy to see that J(M) =

J(x) and that length(M) = i(x). The result now follows from Corollary 1 0 |

THEOREM 13. 4 bidigraph (X, Y, Arcs) is P(L) for an extremal lattice L iff

(i) |[X]=|Y|=n, and
(i) X and Y can be numbered from 1
to n such that (x;, y, ] ]
e € e o (x;, y;) € Ares for all i and if
or
(ii)" X and Y can be numbered from 1
to n such that (x;, y; j j
ey e e (x;, y;) € Ares for all i and if
. ﬁ]’sr;(;ﬁ.g’l"(l?z proot;) for (i) and (ii) runs as follows. Note that a numbering
ii) can be transformed into a numberi isfyi i) si
replacing the number i by n + 1 — . Cring satisiying (1" simply by
N;cessxty ff)!lows from Theorem 11. Now suppose a bidigraph D = (X, Y, Arcs)
:2;155(:; COII;ldlt.lOllS (fl)oand (ii). Theorem 2 and condition (ii) show that b i; P(L)
e L, since if Ou(W) = Ou(x;) then no x, e W wh ]
, ; ) ere r >i. On the othe
hand, y; € Ou(x;) but y, ¢ Ou(x;) for all j < i, so x; € W. The argument for the y, i:

dual. Since we know that D = P(L i i
(al: Since we kno (L) for some lattice L, it follows from Theorem 11
n

Th . -
theekfollowlmg deﬁmgon was S}xggested by Garrett Birkhoff. It focuses attention on
ey role that chains play in the analysis of p-extremal lattices.

'DEF.INITIOI\{ 6 Let L be a lattice of finite length. A chain C=¢,<¢; <" - <
in L is called join-irredundant if |J(c;, ) — J(¢;)| =1 for i =0 - - -1: ll C is call CS
: = -1 alle

e
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meet-irredundant if |M(c;) — M(c; D=1 for i= 0---k—1.Cis called irredun-
dant if it is both join-irredundant and meet-irredundant. ]

REMARK 6. The preceding results show that join-extremal lattices having join-
rank n have a join-irredundant chain of length #. Similarly meet-extremal lattices
having meet-rank n have a meet-irredundant chain on length 7. Finally, extremal
lattices having a join-rank of n have an irredundant chain of length n. In particular,
all chains having length n are (join-, meet-) irredundant as appropriate.

The numbering schemes discussed in Theorems 11 and 13 make is easy to
construct (join-, meet-) irredundant chains. For example, if ji,jas-«-oJn are the
join-irreducibles of a join-extremal lattice of length n, then j, <jivjp< <
JiVjavsVi,isa join-irredundant chain of length n. We will use this observation
to construct maximal irredundant chains in Tamari lattices. n

THEOREM 14. (i) Any finite lattice K can be embedded as a sublattice in a
meet-extremal (join-extremal) lattice L so it corresponds to B(4) in a coprime/
prime decomposition of L.

(ii) Any finite lattice L is isomorphic to an interval of a finite extremal lattice.

Proof. (i) Suppose that K has »n meet-irreducibles numbered nty, Mz, . . ., My Let
D = (X, Y, Arcs) be a bidigraph defined as follows. X = J(K)U{PosPrs--++Pn}>
Y = M(K) u{q,} where the p;’s and g, are chosen so they are distinct from
all elements of K and from each other. Arcs(D) = Arcs(P(K)) Y {(pi> 90) |i=
0,...,nyu{(p,m) li=1,..., n}. It follows from Theorem 2 that D is the poset
of irreducibles of some lattice L. Furthermore, using the ordering go, M, . - > Mn
and pg, Pr» - - - » Pun J(K) it follows from Theorem 11 that L is meet-extremal. Note
that Ou(po) = {go} in D, s0 that p, is an atom in L. po is coprime in L since if
Ou( po) < Ou(W), for some w € W, go€ Ou(w), SO pg S W. The elements of T'(L)
corresponding to B in the coprime/prime decomposition induced by po correspond
to {Ou(W) | W = J(K)}, 50 B is isomorphic to K.

(i) The construction in this case is an extension of the construction used in (i).
Suppose that K has k join-irreducibles  {ji, - - -> je} and n meet-irreducibles
{my,...,m,}. Let D=(X,Y, Arcs) be a bidigraph defined as follows.
X =JK)yuipo, .- ,patuire), Y= MEK)ui{go}{sos--- ,5) and Arcs=
Arcs(P(K) v {(pi40) | i =0, .-, nyu{(pom)li=1..., n} o {(re, )i =
0.....k}u{jn.s)|i=1,...,k}. Note that |X|=|Y| =k +n+2. Itis easy to see
that D satisfies Theorem 13 so D = P(L) for some extremal lattice L. The reader
can verify that K is isomorphic to the sublattice {Ou(W) | W e J(K) v {re} where
ro € W} which is isomorphic to the interval [ro, 7o Vi v Vi |

COROLLARY. Extremal lattices cannot be characterized algebraically. n

EXAMPLE 4. We will show how to embed the modular lattice M into an
extremal lattice. Figure 5(i) shows P(Ms) while Figure 5(ii) shows the bidigraph
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.1 .2 .3 qa .1 .2 .3 31 SZ 83 sa

S PR N RS

b2 Yy whmyd "8
(i) (ii)

Fig. 5. Embedding M into an extremal lattice.

cc?nstructed' ff)llowing the recipe in Theorem 14(ii). The eleme
with the original meet-irreducibles and ¢
to ensure that the constructed bj

. digr i . .
Similarly, the s, (j > graph is the poset of irreducibles of a lattice.

1) correspond to the original join-irreducibles wh

isomorphic to M
horizontal axis of
the thicker edges.

is indicated by the shaded circles. The lattice in Fj

: ure 6 h
Symmetry. Also an irredundant chain of length 8 isg by

indicated by

Fig. 6. M, embedded into an extremal lattice,
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. THEOREM 15. Let L be a meet-extremal lattice. L has an atom a which is coprime.

Furthermore:
1. the decomposition map g: B — A is injective and g(x) covers x;
2. A is meet-extremal and contains all but 1 of the meet-irreducibles of L and

length(A) = length(L) — 1;

3. the remaining meet-irreducible of L is the prime b corresponding to the coprime a;

4. every join-irreducible of A considered as a lattice is either a join-irreducible of L
or a v j where j is a join-irreducible of L that is contained in B.

5. A and B are order retracts of L and B is an order-retract of A.

6. If L is extremal, A is extremal and B is join-extremal.

e leave formulating the dual statements to the reader.

Proof. By Theorem 11, J(L) contains j, such that Ou(j,)={m,}, so j, is a
coprime atom in L. In our decomposition a =j, and b =m,. The set representing
bin [ (L) is Ou(J(b)). It does not include b since there are no arcs from elements of
J(b) to b. The map g: B— A is given by g(x) =x v a. In I'(L), g(x) adds m, to
subsets of M(L). It is clear that g is an injection and that g(x) covers x.

A is meet-extremal by Corollary 2 of Theorem 12. As noted in the preceding
paragraph, m, = b is in B. For i =2 ---n where L has n meet-irreducibles, there is
no arc from j, to m; so j, € J(m;), which means that m, is in the set representing m;,
in ['(L). Thus for i > 1, m, € A. Since A contains 1 less meet-irreducible than L and
is meet-extremal, length(4) = length(L) — 1.

Suppose q is join-irreducible in 4 but not in L. Then ¢ must cover some element
w in B. Suppose w is not join-irreducible, then there exist r,s € B such that
rvs=w. In I'(L) join corresponds to union and it is easy to see that
g(r) v g(s) = g(w) =q. Since g is injective, ¢ is not join-irreducible in A since
g(r), g(s) € A. Thus w must be join-irreducible in L. The order retract properties
follow from Lemma 2.

Finally, if L is extremal we will show that 4 is extremal and that B is
join-extremal. That B is join-extremal follows immediately from Corollary 2 of
Theorem 12 since L is join-extremal. We know that 4 is meet-extremal so we need
only show that it is join-extremal.

Suppose L has n join-irreducibles and n meet-irreducibles. We know that
length(4) =n — 1, so from Lemma | 4 must contain at least # — 1 join-irreducibles.
Each join-irreducible of A4 is either a join-irreducible of L or a v j where j is a
join-irreducible of L contained in B. Thus A can have at most # — | join-irre-
ducibles since a is a join-irreducible of L that cannot contribute a join-irreducible
to 4. Thus A contains exactly n — 1 join-irreducibles and is extremal. The order
retract properties follow from Lemma 2. ]

5. Distributive Lattices

The numbering of Theorem 13 can be used to characterize the poset of irreducibles
of distributive lattices. This characterization leads to a new proof of the fact that a
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finite lattice is distributive iff it is an extremal lattice satisfying the Jordan— :

Dedekind chain condition. This characterization also provides additional informa-
tion about coprime/prime decompositions in the case when L is distributive.

THEOREM 16. Let L be an extremal lattice. Assume that the Join-irreducibles and
meet-irreducibles are numbered as in Theorem 13(ii). Then L is distributive iff for all
i and g, m, € Ou( j,) implies Ou( Jg) € Ou(j,).

Proof. By Theorem 5(a), L is distributive iff all the Jjoin-irreducibles are coprime.
The Corollary to Theorem 11 shows that the condition stated above is equivalent
to the join-irreducibles being coprime. ]

REMARK 7. Theorem 16 provides a much simpler characterization of finite
distributive lattices than Theorem 11 of [19]. The proof of Theorem 17 gives an

alternative proof of the combinatorial characterization of distributive lattices (1]
Theorem 4.6, [20] Theorem 3.1).

THEOREM 17. An extremal lattice, L, satisfying the Jordan — Dedekind chain
condition is distributive.

Proof. Start with the numbering of Theorem 13(ii). Suppose m, € Ou(j;) but
Ou(j,) € Ou(j,). The set e = {m,m, ..., m;} is in I'(L) and O <h<h V<
" <Ji v vy is a maximal chain of length i from O to e. We can construct a
shorter maximal chain as follows. First construct a maximal chain from O to Ji-
This can be constructed using only join-irreducibles numbered <i and will not
include j, since Jq % J;- Now complete the chain from j; to e by first using any needed
elements from j,, . . ., Jo 1 that were not used to create the first maximal chain, and
then using any needed elements from Ja+1s+--sji_,. This produces a maximal
chain from O to e having at most i — | steps which contradicts the fact that the

lattice satisfies the Jordan-Dedekind chain condition. Thus, J, <J; and the result
follows from Theorem 16, |

THEOREM 18. Let L be a distributive lattice and (A, B) a coprime [prime decompo-
sition of the type described in Theorem 15. Then both A and B are distributive (and
hence extremal), while S and g are both lattice homomorphisms, B is isomorphic to a
sublattice of A, B is q Strong retract of L, and B is a retract of A. A dual result holds
if (A, B) is the dual of the representation in T heorem 15.

Proof. 4 and B are distributive since they are sublattices of distributive lattices.
Since L is distributive f(x) = x A b preserves joins as well as meets, and gy)=yva
preserves meet as well as joins. Since g is injective, B is isomorphic to a sublattice
of 4 and by Theorem 8(b) B is a strong retract of L since 1 is surjective. n

REMARK 8. Theorem 18 shows that distributive lattices have a decomposition

Into two distributive lattices such that one is a sublattice of the other. Furthermore,
one of the lattices is a strong retract of the original lattices. Applying this result
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i element
inductively leads to a sequence of strong retracts that ends with the one "
lattice.

6. Locally Distributive Lattices

DEFINITION 7. A lattice L is lower locally distributive|' if for eac}h zeL It)l:
is here x, =inf{y € L | x covers y}. L is up

interval [x_, x] is a Boolean algebra w ' " .

}:cizrlly dE’sttibutive if for each x € L the interval [x, x*] is a Boolean algebra where

, |
x*=sup{y € L |y covers x}.

REMARK 9. For additional information about locally distributive [lie?tti(fzst.see

. ’ istributive lattices are called meet-distributive.

16, 24]. In [24] lower locally distri are cal et-dis
Llr,o7r;1 the jeﬁnit[ions of finite lower (upper) locally distributive lattlcefs 1t6 follo::);
that they are lower (upper) semimodular and hence by Theorem 14 of ([6] p.
i - i hain condition.
hey satisfy the Jordan—Dedekind ¢ .
t iilvann [);] and later Greene and Markowsky [14] ghgw that finite lov:er (tlrx::l:g
locally distributive lattices are exactly the class of join-extremal (meet-ex
i i i dition.

i t satisfy the Jordan—Dedekind chain condition . —
lat’?:\:)rt::l lS; follyows from the fact that locally distributive lattices are p e)[(‘trema;
and Jordan-Dedekind. It is a special case of the more general result ([ 1124 e;:rma
1) that atoms in semidistributive lattices are coprime. See ([22] p..d. t i)bmive
discussion of upper locally distributive lattices and why they are semidistr .

THEOREM 19. In finite upper (lower) locally distributive lattices, atoms (coatom:)
are coprime ( prime).

. . B . et
Theorem 20 characterizes the posets of irreducibles of Jf)rdan I?eietl;::?;cznfhat
i i ization provides an alternative proof o ict tha
extremal lattices. This characteriza : . .
every meet-extremal lattice that satisfies the Jordan—Dedel'(m(}i1 cgam r;zr:si:tt:(()): »
istributi that both 4 and B in the deco
r locally distributive. It also proves ( ‘
}Il'rljlzzrem 15yare upper locally distributive. An alternative representation of locally

distributive lattices is given in [9].

THEOREM 20. Let L be a finite lattice and U (L) be the representation derived j:;j)’:n
the poset of irreducibles. Furthermore, for x € L, let T'(x) be the corresponding
] ivalent.

t in T(L). Then the following are equiva . _ 5
elez:n ez i; me(et-extremal and satisfies the Jordan — Dedekind chain condition.
‘ j — =1.
. Vx e L, if x covers y then |['(x) — ()| . . N
lIj’roo)}e(a) —f> (b) Suppose L satisfies the Jordan—Dedekind chain condltlllon atr}lld
n= mr(.L) = height(L). It is clear that any maximal chain from 0 tol 'must ave the
form O =c¢, <+ <c,=1 Since the lattice is Jordan—Dedekind, if x covesr§ ye,
there is a m:ximal chain of length » from O to [ that contains both x and y. Sinc

mr(L) = n, (b) follows.
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an(bl)n—> (a) lIt is faasy to see ‘that a lattice satisfying (b) is Jordan-Dedekind since
me);[ e:;(rl;nn?alcl;am from y to x must contajn exactly |[(x) — ()| elements. It is
- cCause any maximal chain from O to 1 i ‘
must
Ir() — ro)| = [F(I)l = ’M(L)[ elements. o contain exac“.}’

COROLLARY |. 4 meet-ex ]
C . -extremal lattice that sqyi ] ]
condition is upper locally distributive. i sattes the fordanDedekind et

Pr i

L lyo*ofl.)eFt;om. 'I“heo;er;‘ll 20 it follows that if x covers p, I'(x) —I'(p) is a singleton
€ Jomn of all elements that cover i i |
Le ' y. It is clear that the interval *
Is a Boolean algebra since every element in the interval is formed by takirgg, fhe]

union of I'( ) and the sin let -
cover y, getons I'(x) — I'(y) where x Tanges over all elements that
n

COROLL ]
ARY 2. Let L be 4 Sinite, upper locally distributive lattice. Decompose

L along the lines of Theorem |
tite. em 15. Then both 4 and B are upper locally distriby-
n

REMARK 10 Corollar
\ . Y 2 also follows from the f idistributivi
semimodularity are inherited by sublattices, " et tha Sem‘dlsmb““"‘ty e

The ni . . .
lom”nylcdei sﬁ:ﬁ}ﬁ?lcela:}:‘i magpmg properties of distributive lattices do not hold for
tve lattices. Figure 7 shows an upper locally distributi i
o B o o blattes ' pper locally distributive lattice such
] and neither f nor g js a latti i
shown is the poset of irreducibles of the lattice.g < homomorphism, Also

7. Tamari Associativity Lattices

Given a bin i i

parentheSizeart)l; operatlon. *and n + | appropriate elements there are many ways to

Berenze e;xpressnops Kr* X% wx, ., The collection of parenthesized
an be made into a lattjce based on replacing products of the form
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Fig. 8. T}, T,, T; and T,.

(a * b) * c by a * (b * ¢). Bennett and Birkhoff [4] call the corresponding lattices the
Tamari lattices T, and discuss their history and some of their properties. We will
prove that the Tamari lattices are extremal and complemented. Furthermore, they
share the nice decomposition properties of distributive lattices and Boolean alge-
bras. Figure 8 shows T}, T,, T, and T} so as to highlight the decompositions.

We will use the alternative definition (Definition 8) of Tamari lattices discovered
by Huang and Tamari [15] and also discussed in [26] and [4].

DEFINITION 8. For each n let T, be the set of all n-vectors @, 05, ...,0,) of
positive integers <n satisfying the following properties.
()i<yvforalli=1,...,n
(it) i <j <v; implies v; < v,
n

T, is ordered by componentwise comparison.

REMARK 11. Huang and Tamari observed that T, is closed under pointwise
meets in the Cartesian product of n copies of 1 <2 < - - - < n, whence T, is a lattice.
Less obvious is the self-duality of 7,. ([26] Lemmas 8 and 9) and [4] determine the
irreducibles of the Tamari lattices. Their results are summarized in Theorem 21. For
more information on the Tamari lattices see ([13] pp. 14—15; p. 51, [26] and [4]).
[26] also shows that the T, are splitting lattices in the sense of McKenzie, and the
methods in [26] can be used to prove that the 7, are semidistributive, which implies

that they are pseudocomplemented.

THEOREM 21. The join-irreducibles of T, are exactly the vectors [j, k] forj <k <n
Uikli=i if i#)j and [}, k], =k ik =0,2,...,j—1Lkj+1,...,n). The
meet-irreducibles of T, are exactly the vectors {j, k) for j <k < n where Gykdi=n
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i i<j or i>k and Gy k j
k>, =k S .
AN g k> if ji<k ((/,k):(n,n,...,n,k,...,k

+

]
CORO -
LLARY 1. ([j. k1. <p, 4)) € Ares(P(T,)) iff p <j<g<k -

COROLLAR j
Y2 InT,, O is the meet of coatoms and I is the Join of atoms

Proof. Consider an elem
. i ent of the form v =
since if w > p. w. = . =<{p,p) where p < n. This i
It is easy l;’;;' l"' for i + p and Wp, =4¢ >p. It follows that w_ > w i;s a coatom
self-dual. /i \hC .“.dt /\{<p-l7> ,/’:l =1 =(1,2, .. ”n) _qo S'» sow =.[.
» £ 1s the join of atoms. The atoms are the elem;nts' ij j:— lj e T s
E] . .

COROLLARY 3. 7 J
ROt - The primes of T, are exactly its coat ] ]
exactly e o - oms and its coprimes are

Proof. Fi o
P p >.fTo lsr:;’ :E;’:n Coroll.dry 2 the coatoms are exactly the elements of the f.
meet 3x € ¥ such <p,p> is prime, suppose inf ¥ < {p, p). Since inf i ¢ lorm
N -  suc .that Xp =p. Itis clear that x < (p N is pointwise
© meet-irreducible of the form (p, ¢} with p e

. < gi : : .
coatoms, and no coatom is <<p, ¢ with p < . 4 15 prime since O is the meet of

THEOREM 22 .
T, is a complemented, join- and meet-pseudocomplemented,
, ex-

tremal lattice of length n(n — 1
Irer = 1)/2. T, has a copri }
ol latte Y prime [prime decompositi
o {p hic tol .T,,‘ 1 and another one such that A is isomor, h'posm(m el shat
1.) ecompositions both A and B are extremal lattice, PHEL0 T I both
roof. T join-i i .
G ;ﬁCh l:}e]axzulnlbe.r o/:“ Join-irreducibles of T, is equal to the number of paj
, S/ <K < n, which is simpl] o
o) such. < A : ply the number of paj
ducﬂ;r;:i:/;thotllt repetition. This number is n(n — 1)/2. Theonuprilbr:rtalf(en fro'm ;
g repe[itiglrxla t]? the number of pairs 1 <P < ¢q <n, which is the nun(1)b meet‘"fe'
Now wotai t:rden fr}i)m. 1., eesh— 1. This also works out to be nin irlo)f2palrs
precedes 1o <er t e Jc?xn-lrreducibles reverse lexicographically so that/ f k
e ,2 S, or if j <rand k = 5. This means that [/, k] i !j" ]
3 —2)/2+4 in the total order. 1 comes ih position
ext, totally order the meet-irr i
: -irreducibles usin i
orden ol . g the same re i
e ie., <1’.k> p.re.cedes <rosy if k<sorif j<rand k —v‘:rs?l"k?mcogralmlcal
AI’Cor (i‘;)mesl In position k(k —1)/2 + in the total order o This means that
0 . . . ’
A a<rpy >t)o T:eorem 21 implies that ([, kK, G k—De Arcs(P(T,)) and
descn.be;i. N gte uL:atrc.s(lf‘(T,,)) thfan <p, q)> precedes (j, k — 1> in the o:deilirrll t'hat
From Thoonese (ha gj,” ] comes in position (k — )k -2)2 +/ as does (j, k o
it follows that T i A
e at 7, is extremal and that consequently it has length
We wi ] .
Iamcz wnl:j p;oYe that T, is complemented by induction on n. T
Sim:g (“2 1zs]a two element chain. Both are complement’edI
(1, 2) = {1 1>} inall A(T),), [ i .
‘ ) , #) [1, 2] is a copri i i
prime decomposition generated by the pair ([1 2], ¢ lprllgl)e.lg(())rr:“'jl?l: o coﬁr;me/
» 2f, 1, 13). eorem we

is the one element
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know A is extremal and B is join-extremal and the map f: B — A is injective. If we
and <1, 1) are complements and that B is complemented, it

can prove that [1,2]
lemented. Pseudo-complementation

will follow from Theorem 10 that T, is comp
follows from Theorem 5 and Corollary 3 of Theorem 21.

Now [1,2]=(2,2,3,4, ... ,n) while {1, 1>=(1,n,n,... ,n). It is easy to see
that [1,2] A {1,1>=(1,2,3,...,m=0. From the proof of Corollary 2 of Theo-
rem 21 we know that <1, 1) is a coatom. Since [1,21 £ (1, 1), [1,2) v <1, 1>=1L

We will prove that B is complemented by showing that B is isomorphic to T, _.
For Theorem 15 and Lemma 2 the map f: 4 —B given by f(») =y ALl 1)
is surjective. This means that B = {veT,|v,=1}. It is casy to see that B

is isomorphic to T, , by considering the map ©:B-T,_, given by

G)((l=v,,v2,v3,...,v,,=n))=(v2—l,vs—l,...,u,,—l). Thus, B is extremal

also.
The Tamari lattice is self-dual so it is possible to find a coprime/prime decompo-

sition such that 4 is isomorphic to T, ;. [ |

REMARK 12. The fact that T, is complemented is attributed by ([13] p. 51;

Exercises 30 & 31) to H. Lakser. For a thorough discussion of finite lattices that are

both complemented and pseudocomplemented see [8].

The elements of T, for which v, =1 are not the only sublattice of T, which is
isomorphic to 7, _,. Another sublattice of 7, isomorphic to T,_, is the set of
elements for which v; <n —1 for all j<n~1. In this last case, however, the
complement of this set is not a lattice so we do not get a prime/coprime decompo-
sition of T,. Another prime/coprime decomposition of T, is given by the pair
Kn—1,n—=1)[n—1n]). In this case A is isomorphic to T, _ .

Because T, is extremal its longest chain has length n(n — 1)/2. We will now show
that the shortest maximal chain in 7, has length n — 1. [

LEMMA 3. b covers a in T, if and only if there exists j such that a; = b, for all i #J,
a; <b; and b, = b, = a, where k=a;+1.

Proof. Sufficiency: Suppose that a <c¢ < b. This can only happen if a; <¢; <b;.
Note that j <a; <k =a;+1<¢;, 50 by =¢ < ¢ < b, = b, which is impossible.
If b covers a let j be the smallest index where a and b differ. Thus,

Necessity:
Jif j<i<(k—1)and

a;<b. Let k=a;+1 Let ¢ be the vector defined by ¢; =a
¢; = b; otherwise. We first show that ¢ € T,. Since ¢; >a; =i for all i, the first
condition is satisfied. Now suppose that i <p <¢;. If i <j or i>k, then ¢;=b,.
Since beT,, ¢, <b,<b. If j<i< (k —1), then ¢, =a;. Since aeT,, for all i
such that j<i<(k—1)=ga;q <a;. Ifjgig<k—1)and iSp<c¢=a, then
p <a;=(k —1). Thus, ¢, =a, < a;. It is clear that a < ¢ < b since ¢; <b;. Since b
covers a, a = ¢. This means that a and b are identical for i <j and i > k.

Let d be the vector defined by d,=a; if j+1<i<(k —1), 4 =b, and d, = b,
otherwise. We will show that d € T,. As before d; >i. Now let i <p < d,. First,
suppose that i <j or i = k. If further, p #J, then d, < b, <b; =d,. Now consider
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th . .
bkegc;s.epﬁh;sj. (I{fiijSaIi:b,, then b, <b,. Since a;<b

di:a:‘ Smce, é;;gbjgbi:di' If i<p<d and jj<i<(k—l)=a h
d,=a, <a,=d. This n"e;v:; f ;ll It follows that i<p Sa<a=(k —jl’)t o
g s If, nythecasej<p<a§-=bk.lfp>k thejnd = b
Y {)s(k—l),thendp=ap<aj=(k—l)<k<b’ d Pl S e

. < 4;. » J Sk =g by S0 by

d < b. Since b covers a, d = b. This means th]at akandajl)-;rle?dzﬁtii(:ll I;klsi ?gr "’V'hertll(l:e
7in the

range j+1---(k —1). They diff ;
&4 _ | =a,. y difer only at j where b;=b, = a,. Note also that
|

S:ZA[I;“;LE 5. Consider the elements 2,3 (=(4,3,3

nd [,2 ]3](e=(l, 3,3,4)) from T,, which is picture’d ,in
, ven though they differ in only one component because 1 + [2 3]

» 1= 2’

but <2,3), =4%3=¢
) g =<2,3),=[2,3],. Th
impli » 32. The reader should
plies that <2, 3) covers (1,3 and that <1, 3 coversu[z ;:]hCCk that Lemma 3
s . .

,4)), (1,35 (=(3,3,3,4),
Figure 8. (2, 3> does not

THEOR
Prowy ETMhCZ.’t. Tl;e. shortest maximal chain in T, has length n — 1
" r . . . " - )
proot is by induction of »n with the result being obviously true fi
rue for

n =1 and 2. The prime/copri
| prime decomposition i
shows that T, | is the interval [0, <1 DlinT (gr’olrz’t[h]’ :'ZD etion pyncorem 22
' . - ei

follows that there is a maximal chain of length 1 +(n riauction hypothesis it

2)in T, (n -2 steps in
shorter chain.

Consider the map 7 i
pP/f:T,- Bgiven b
o . : p YS(3) =y A<, 1 is is j '
thath.c; coprime/prime decomposition map to all of <T) i’(thls e 3 .e"tens‘on
if y coYers x then either f{( y) =f(x) or f(y) s oy depens it follows
X and y differ in the first coordinate. Now

X< X, < <x,= 1 0‘ ]e“ th q m ] . “16 Cha"l C 1S a lllaXlllla] Chal” n 7
0 i q g n f( ) n
1

of length at most i
! qg—1 since f(x,) = x — .
which x, € 4. Thus g—12n-2 wh’e;lcl:e qf(:ln_l_) lwhere *1s the smallest index for
= : ]

consider a maximal chain C =

REMAR i

o K (113. It was noted earlier that an irredundant chain i

pan e produced by forming the sequence 0 < j, <
er i '

e ing ) 203f45Theorem 22 this yields the chain l0 = 12345 22345
cees-.., 12345 13345 B s

wo ooor 42 . s ce., nd4345, =

o] dwnsh to analyze in greater detail the relationship bet o T and 7

10 this end we need a better understanding of joi e vommaten i T

Is given by Lemma 4. £° "

n an extremal lattice
VJ2<---<I Using the

EM - h p a a. oliows 1 st com Uule
., f y n [4 s f 4 p
], VlA 4 ] e join o X and n 1 can be ompute . w

such that W; = max{x. .
{'xl’yi} Jor all i, Next define :z recursively as follows Firse, let
. , le

Iy =n. Next, assume th
. . ’ ar Z—+ | R4
{z,» ,j—l Lo ; » 2, are defined. New set z; 1o max {W-}u
r

» W,«}. Then z =x vy

’j<k=aj+]<bj SO &
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Proof. In general, w is not a member of T,, so we must show that zis a member
of T,. For all i, z; > w; > x; > i so z satisfies condition (i) of Definition 8. It remains
to show that z satisfies condition (ii) of Definition 8.

The result holds for i = n. Assume that the result is true for i +1, ..., n. We will
show that it holds for i. Now suppose that i <j <z If i =}, condition (ii) holds
trivially. Thus, we may assume that i <j<z. If j <w, then by definition of
2;, z; 2 z;. Thus, we may assume that w, <. This implies that z; > w; so there must
exist a k such that z; =z, and i + 1 <k <w;. Now i+ ISk <j<z =2, whence
by the recursive hypothesis z; < z; = z;. This shows that z e T,.

It is clear that z is an upper bound of {x, y} so it only remains to prove that it
is the least upper bound of {x, y}. Let u be any upper bound of {x,y}. It is clear
that # > w. We will now prove by induction that u; 2 z;.

The result is trivially true for i =mn. Assume it is true for i+1,...,n and
consider the situation for u;. Since u € T,,, u; > u; for all i <j <u;. Since u; = w;,
u,zu; for all i <j<w, u >max{w;, ;1. ., Uy} ZMAX{W; Zi 40, 2} =12
where ¢ = w;. Thus, z=x v y. ]

REMARK 14. Theorem 24 refines the earlier results and gives us more insight into

the relationship between 7, and T,,_,. Formulating the dual of Theorem 24 is left
]

to the reader.

THEOREM 24. Decompose T, into A and B as in Theorem 22 50 B is isomorphic to
T,_,. The decomposition maps f and g are lattice homomorphisms, B is a sublattice
of A and T, _, is a strong retract of T,. B is a retract of A.

Proof. The coprime/prime pair for this decomposition is ([1, 2], <1, 1)). The map
fis given by f(x) = x A (1, 1>. We know that f preserves meets so we need only check

that it preserves joins. Since {1, 1> =(1,n,n,..., n), f(x) = (1, X3, X3, .. ., X,). Let
x,yeA and z=x vy If you examine the algorithm given in Lemma 4 for
computing x v y, you will see thatfori=2,...,n,z, = where t = f(x) v f(y) since

none of these computations depend on the first coordinate. Thus, [is join-preserving

and hence a homomorphism.

From Lemma 4, g(1,x;,...,x)=[1L21v(l, x,... s Xp)-
We know that g preserves joins; it is straightforward to verify that it preserves
meets as well. Thus, B(T, ,) is a sublattice of A. From Theorem 8(b) it follows

that T,,_, is a strong retract of T, and that B is a retract of A. [

) Xp) = (X2, X3, . -

REMARK 15. Figure 8 illustrates Theorem 24. The shaded circles show the
position of T, _, in T, when viewed as B. The circles with the X’s show the image
of T,_, in T, via g. It is an interesting exercise to redraw the figures to illustrate
the dual of Theorem 24 and to find the irredundant chains in Figure 8.

The map f in Theorem 24 is surjective. The inverse image of any element of
B is a chain in 4. In particular, given x =(1,x,,...,x,) in B, f~'({x}) =
{(@, X, - - ., x,) | 3k =2 such that ¢ =k = x, and x; <k for 2<j <k}.
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Th
eorem 14 proves that every finite lattice can be em
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X of the nice mapping properties of

bedded in some finite
Tamari lattices jt would

‘ ce M cannot be embed-
Is semidistributive; alf sublattices of 3
€, M is not semidistributive,

ded. ip zfmy.T,,. [26] showed that 7,
semidistributive lattice are semidistributiv,

onto B; where B, is the finite Bo
of a more general result proved
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B, + has a coprime/prime decomposi
particular, both 4 and B i this case
maptsfI and g, are lattice isomorphis
coprime/prime decomposition of B
According to Theorem 24 T, %42 hl;;
degomposition maps f, and g,
su.rjective and g, is injective. Thj
prime decomposition of T s

Define the monomorphism ¢ : B

k1T,
If xeB, ., - B, then a(x)=g2;oz‘(f, (28 follows. If x
Tk+2—>B/¢+| as follows. If xeT,,,
+ 1

n(xX) =g (B(f,(x)). T ' i
epimorphism a(re))r)outi}:)ee.detaﬂs o1 showd

It remains to show that
n(o(x)) = Bla(x)) =x. If xe B, -
&1 @BC/CN) =g, (S, sinc

(x)) = x since i

on .n. For n =0, 1 the result is trivial since
ult is true for n = k and leta: B, » T and
ms such that B(x(x)) = x for all x € BI: i lNow
tlon.of the type described in Theoremk ‘18 In
are 1somorphic to B, and the decomposit.ion
ms. Think of B, as B, the lower part, of the
I

a CQprime/prime decomposition such that th
are lattice homomorphisms. Furthermore / ’e
nk of T, +1 a8 B, the lower part, of the co;’)rirzn;
€ B, then g(x) =
(%))). Now define an kepimori));l)isma(jr):
let n(x) = B(x). If xeTl, . ,— .
ng that ¢ is g monomorphism

mo(x)) =x for al XeB, .

%» then n(a(x)) =g,/

and g, are inverse isomor

If xeB,

(& /i) =
phisms. |

From Theorem 25 it fo

! llows that B
following Corollary follow ’

S.

is a sublattjce of T

n

+1 from which the

COI{OLLAI{ Y . Iivéf y al.s”l“ul")e lal”(e of len, lh nis a Subla”lle 4] j . .
f g f n+1

REMARK 17. 1t is of i

Lo Interest to characterize th
sublatt_‘ce Isomorphic to B,. Because T, is lefe ]demems of Ty that form a
sublattices. T will briefly d n+1 -dual there a
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‘best be characterized as the set of all vectors in T, ,, such that the consecutive
components of the vector are monotonically increasing. Thus, (1, 3, 3, 4) belongs to

the sublattice, but (4, 3, 3, 4) does not. The proofs of these statements are left to the
[ ]

reader.
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