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Best Huffman Trees

George Markowsky

Computer Sciences Department, IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598, USA

Summary. Given a sequence of positive weights. W=w =...2w, >0, there
is a Huffman tree, TT (“T-up”) which minimizes the following functions:
max {d(w))}; Zd(w,); Zf(d(w;))w; (here d(w;) represents the distance of a leal
of weight w; to the root and f is a function defined for nonnegative integers
having the property that g(x)=f{(x+1)—f(x) is monotone increasing) over
the set of all trees for W having minimal expected length. Minimizing the
first two functions was first done by Schwartz [5]. In the case of codes
where W is a sequence of probabilities, this implies that the codes based on
T1 have all their absolute central moments minimal. In particular, they are
the least variance codes which were also described by Kou [3]. Further-
more, there exists a Huffman tree T} (“T-down”) which maximizes the
functions considered above.

However, if g(x) is monotone decreasing, T1 and T| respectively
maximize and minimize Zf(d(w;)w, over the set of all trees for W having
minimal expected length. In addition. we derive a number of interesting
results about the distribution of labels within Huffman trees. By suitable
modifications of the usuval Huffman tree construction, (see [1]) 71 and T
can also be constructed in time O(n logn).

1. Introduction

The discussion in this paper will refer to trees rather than codes, since a num-
ber of arguments that we use depend on weights of internal nodes, which are
much easier to visualize in the case of trees. There is a very simple relationship
between trees and codes which is discussed in greater detail in [2, 3] and [4;
Chap. 10]. Furthermore. only binary trees will be considered, since the results
in the k-ary case can be derived in a straightforward manner from the results
herein along the lines of Theorem 10.6 in [4].

At this point it might be helpful to informally recall some basic facts about
Huffman trees. Essentially. we begin with a sequence of weights
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WiZ....2w,>0 and we wish to construct a tree which has the weights at its

n

leaves and minimizes the sum 2. liwi. where I, is the distance from the root to

' the leaf labeled by w.. Huffman

=1
[2] gave a recursive procedure for constructing
such a tree, T:

o*(TLQA/
a) for n=1, it is obvious what the tree looks like;

b) for n>1. replace the sequence w,>...2w,. by tbKesult of inserting

w,_,+w, into the sequence w, > ... 2w, , in the proper[/ﬁnd construct the tree
T, for this shorter sequence;

<) take any leaf of T’ having weight w

n—1tw, and create a new tree T by
adding two sons to it bearing the labels w,_, and w,.

Notation. The following notation will be used throughout this paper.

1) W shall denote a sequence of positive weights w, 2w, > ... 2w,>0.

2) (W) shall denote the set of all pairs (T.| {), where T is a (binary) tree
having n leaves and | | (called the weight function) maps the nodes of T into
the positive reals in such a way that:

a) for each x, the number of leaves of T
the number of elements of W having value equal to x;

b) the weight of an internal node is the sum of the weight of its sons. For a
node veT. we use |v| to denote its weight. Note that | | is determined by its
values on the leaves. As usual, we shall Just refer to TeJ (W) rather than
(T] ]). Note also that for the set X, |X| will denote its cardinality.

3) For Teg (W) and veT, d(T,v) or d(v) (if T is clear} will denote the dis-
tance between the root of T and ».

4) For Te (W), L(T) shall denote the leaves of T.

5) Let f be a function defined for nonnegative integers and TeT (W).
E(T. f) or E(f) (if T is clear) shall denote the sum

2, @) o],

vel(T)

with weight equal to x is equal to

E(T. f) is called the expected value of fon T,
6) O(W) shall denote {TeT (W)|E(T, ¢) is minimal in
identity function. O(W) is the set of optimal merge trees.

7) (W) shall denote the set of all Huffman trees for the sequence W. As

noted above, #(W)< @(W). In general, not all optimal merge trees are Huff-
man trees.

8) For TeJ (W), m a non-ne
define the following functions:

a) Node#(T.r)=|{veT: lol=r}|;

b) Leal#(T.r) =|{veL(T); [vj=r}|;

¢) Minlev(T,r) =0. if Node #(T.r)=0
=min{d(v)|veT |v]=r}, else;

d) Maxlev(T.r) =0, if Node #(T,r)=0,
=max{d(v)lve L(T), |v]=r}, else;

(W)} where e is the

gative integer and r a positive real number
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=0, if Leaf #(T,r)=0, '
=min{d(v)|ve L(T). lv|=r}, else;
. 20
f(T.r) =0, if Leaf%(T,r)=0, .
 MaxlealtT:n =max {d(v)|veL(T), |v|=r1}, ?’18"6’)}]
i = =r,d(v)=Minlev(T. r)}};
Tr)  =l{veT|ll=r, _
l'gl)) II\\/I/Ita:j:#:((’l", r) =|{veT| |[v|=r,d(v)=Maxlev(T, IIHN
i) Nodelev(T.r, m)=|{veT} lv|=r, d(v)=m_}|. |
)l o o d,(”)—f"} .> ' which is the merge of
9) A(W) shall denote the sequence w)ZW,...ZW,
>...2w _,andw,_,+Ww, . ' _—
Wl:\?\.’he—rew "coilvenient alnd unambiguous we will drop T as a variable in

e 1 i inimize (maximize) E(T. f) for
is paper is to show how to mir EL) for
g hV;)ggr?ii Ofirth\Zrli)oss classes of f. The followmg.lemma };zg;;irs in [3]
:Il:leleo(rem 1 and shows that it is sufficient to just consider Te .

¢) Minleaf(T,r)

ir m,
1. Given TeO(W), there exists T*eH# (W) suchTthaing;?af).r
II:e:]ﬂne‘\?(T;' m)=Leaflev(T*,r,m). In particular, for all f, E( )= .
e rom)=

The basic idea behind the proof is to show that‘ we can rearrar;)grf(:) t’tflel’::i
P’?Of-_ " hts around so that the two lightest welgl'lt nodes are\ others.
SVY“Chmg g tzliw expected value of the identity function or the dlbttrlll 2[ "
W“h‘)}“ changllng s. The proof proceeds by induction on n, the.leng | nOde.
S elEh e eavle i trivial. Assume n=2. Since TeO(W), every mterna‘li ©
iy fSUt 1Sand v .be two brothers, such that |o,|= v, and (vl)nd
e 'deg;ee ir aflt r:J(;des of 2T Let v, and v, be leaves such that |03|f0=rw";e‘£1(T)
E;lix—_l-n‘:,a. 0‘]])eﬁne (T,.| 1peT W), by T,=T z}j“’ir) IlvuiIl =hlz‘5 Jor vel(D
Ct0,03.05.04), Iody =l for i=1,....4. For v¢L(T). I s the value de

i ?1 b3 i:s values at the leaves, subject to the constrain o
;enrrinr:?eernalynode is the sum of the weights of its sons. Note tha

*)  E(T,.0)=E(T, e)+ (o] —v,)) (d(uz)—d(v3))+(lv4|—lvll) (d(v)—d(vs)).

= = = ; >‘— Wn~
Furthermore, the following relations h011d;' A ZI:;IdZ w"(*—)|u4li, |;12)l, tha,t
’ = The relations m
=lv.l:  d{v)=d(v,)=d(vs). d(v,). - rela ‘
E(|103|’e)<l€3(11) e). Hi)wever, since E(T. e) is minimal, we must have
19 = s

(Iv5]—v)) (@d(vs) —d(vy))=(lvsl— v, 1) (d(vy) —d(v,))=0.

i i i ights or weights at

Thus i the swich we made. et e o Al o, Leaew( 7.

=Llfi:ttkzz}(:i’|:)"gé defined as follows. T, iso-Tl with \l;;easgirl: tcli]r:tp;i:;i@a(zcz%/)li

is the restriction of | |, to T, ._(il;arly;-?v;ziJl(fA(Tzz.(g’(A(W))’ et T exisf

T8 i T 1< g o0 i v v ok
: W n . PR . .

bz()g?;:, :) :]—OVS,?,?LT\})"ZIE%??);W:::+ w, = E(T},e), which is impossible since
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T,eC(W). Thus T,eC{4(w)) and from indu
T**e #(4(w)) such that Leaflev(T,.r.m)=
T*e# (W) be constructed from T** by ad
weight w, | +w_and the same value of d as

One can easily check that Leaflev(T*.r.m
forallr. m.

ction it follows that there exists
Leaflev(T** r.m) for all r.m. Let
ding sons to a leaf of T** having
the leaf used to derive T, from T,.
)=Leaflev(T", r.m)= Leaflev(T. r. m)

2. Main Results

The following lemma is essentially Lemma 5 in [3].
Lemma 2. Let T T'e#(W). Then:

a) Node#(T. r)= Node #(T".r) for all r:
b) if v.v*e T are such that [0} > [v*|. then d(v) <d(v¥);
) if v,,v,eT are such that lvo,|=]v,|, then ld(v,)—d(v,)| < 1.

Proof. a) This follows immediatel
arc constructed by picking the
their sum. )

b) We proceed by induction on n, the case n=
carlier. T can be constructed from some T*
and v, be the two nodes with weights w,
obtain T. By induction. b) holds for T*. Thus, the only way b) can fail for T is
for there to exist peT* with |v|>]v,| and d(T* v)=d(T, 0)>d(T v,)=d(T, v;).
Since v is not the root it has a brother ¢’ such that vizw,_ 1~ since v'e T* and
thus was added after the two smallest labels (w, | and w,) were. However, the
father. v*_ of v and v’ hag weight lvl+|v'|>|v1|+]vzl=|v*| where v* is the father
of v; and v,. But v*eT* whence d(v*)<d(v+) and d(v)=d(v*)+l§d(v*)+l
=d(v,). yielding a contradiction,

) If v, =v,. we are done. If Uy #0,, then neither is the root. Let vy be the
father of v, and v, the father of v,. Since [v3]> 10,1 =[v,] and [val >, =[v,]. we
can use b) to conclude that d(vz)gd(v3)=d(v,)—l and d(v,)gd(v4)=d(vz)—1,
which implies that ldv)—dw)i<1.

We

y from induction on n since all Huffman trees
two smallest weights and replacing them by

| being trivial. As noted
E€H(A(W)) in the usual way. Let v,
-1 and w, added to T* in order to

are now ready to define the Huffman trees of greatest interest to us,

Definition. 1. To construct TT(W) or T1, which we call T-up, we follow the
recipe given in the beginning of the paper. except that we modify step c) by
adding the sons to a leaf. v, of TT(4(W)) having lvl=w,,ﬁ,+w,, and d(v)
=Minleaf(T1(4(W)). fol). The definition of T(W). T-down. is similar except
that we require d(v)zMaxleaf(Ti(A(W)). [0)).

We can now describe some of the key properties of T1 and T|. Note that
TT and T| are not unique in general.
Theorem 1. For ai Tex(W) and all r Minlev(T1. r)<Minlev(T. r).
Maxlev(T |.r)> Maxiev(T.r). Furthermore, in case of equality,
Min#(T1.r)= Min #(T.r). Max #(Tt,n= Max # (T r).
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s of r we must
Proof. The proof is by induction on n. Clearly. the o.r(ljly values
of. arl oy
c;rols‘ider are w,_, and w,. There are two cases to consicer

Case 1. w,_>w,.

= +w,) for all
Here we must have that Node#(T, w,,fl.—l—w,i)szafV#;)(Té:g,eﬁeas w) iy
Te #(A(W)), since the sum of any two weights in A( e
Note also that for all Tes (W),

. , Fw)z
Minlev(T, w,)=1+Minlev(T.w, +w,)=1+ Minlev(T". w,_, )

1 +Minlev(TT(AW),w,_ +w,)= Minlev(T (W), w,)

hich T was constructed using Huffman’s

where T e #(4(W)) is the tree from w=1 e e (W, we are done in the

procedure. Finally, since Node #(T, w,)
e r= i is cas s it onl
Cabeifr—w";w the same argument as for w, holds in th’}? (;:?& (Fll}/‘)l;bble ;)ucz

W2 > Woo b ituati i =w_,.LetveTe
s sider the situation with w,,72, o 1 by Lemma 2
remalm—tv(\)z cOméince the father v’ of v has |v I;2V\f,,_2>_w,,(I };r‘:’lﬂT i); e usual
D) < Miev(To 4, Thus, if T e (W) i derived from T'in the uswa
lv)v)ay(v )=Minlev(T, ‘:v,,j:) =Minlev(T".w,_,). Hence, for
i T, = Minlev(T (W), w,_ ).
er;I“ZV(co:glL:i)e Case 1 it is only necessary to an;lﬂlg;;(‘t;)
Minlev(T. w, ,)=Minlev(T (W), w,_,) for STomf\:V  reed 1o
T'e#(A(W)) be the predecessor jor 1L L
Min#(T1.w,_,)=Min#(Tw,_,). Let i be sucl .
i L, ZWao1: i and
léjlféilf;iczult v;cn—nlc;cies of vlveight 2w, hm;e tvyohtsovils off(\;;elagrlll; »’;;}%(W).
ight w,_,+w, has one son ol welg w1 1t nodes of
Fom e don o 11 Gl e N T 2 1
w:a(i)g;\t w,_, having distance=Minlev(’I('iT.2wf,_v;t):i4g-étaiw * wist in trees in
i +w,). Since, nodes o n— W with
;xaewl\;hﬂl?/][(;;:vfilzwn, 1)§Min#gfl\iwnl,\ll)(TTfoMf zilw )Zidjifrl(lev)(r ol
- 1 an inle SWhot nl =
Minlev(T. w, ;)=Minlev(T1,w,_,) ! ‘
s ”}his Sh(l)WS Ny W",J;%xlﬁjéz: \Ivr';_tx}zis case there will be a
If i= senti the same arg - S ) oht
If 1—2kj ;s:e“?*tlilgin{w LW 2w, W) 3av1ngl\zpeleb‘j)(rpxr$f2v:': g,)-
pode Olt; ‘g:éimes necessary"{o compare Minlev(T 1, w¥) and Min »EWn-1)
W, .

but otherwise the argument is the same.

e situation where
As usual, let
show that
for all

“ase 2. w, _{=W,. | ‘ |
: - " o the one in Case 1. First, one must consider

This argument is very similar t Min g (11 w)=2 and Minlev(T1. W)

i re
the situation where w,_,>w,_ ;. He

. w = . = <j<iz2 but
I; o qu? d then let i be such that W, =W, for all 1<j<si
n—-2 n—1° ===

i of i being odd or
i the consequences
ase 1, we consider
w, ;_;>w, ;. AsinC

; roof.
even in almost the identical way to concluq;:‘i;;ir End e leave them to the
ts are very Si
For T), the argumen

reader. [
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Before proceeding to results dealing with E(T'1. f). we show that T1 has
the properties considered by E.S. Schwartz in [5].

Corollary 1. For all Te (W), max{d(v)lveL(TT)}gmax{d(v)lveL(T)} and
Y dv)= Y d(v).

vel(T1) velL{T)

Proof. From Lemma 2 it follows that for all Tesr(W), max {d(v)|ve L(T)}
=Maxlev(T w ). Theorem 1 implies that Minlev(T'1, w,) < Minlev(T, w,) for all
Tes(W). If the inequality is  strict. we are done since
Max!ev(Tw,,)gMinlev(T. w,)+1. On the other hand if Minlev(T1,w,)
=Minlev(T'w,.  then = Min#(T7.w)>Min#(T.w).  Thus
Maxlev(TT,w")#:Minlev(TT, w,). Maxlev(T. w,)+ Minlev(T, w,). This implies
that Maxlev(T1.w )= Minlev(T1, w,)+1=Minlev(T. w,)+1=Maxlev(T w,).

The proof that the second property holds proceeds by induction. If when
we go from TT4W) to TT(W), we attach nodes of weight w,_, and w, to a
node v with jv|=w, | +w, and d(v)=Minlev(T1(W), |v]), and the minimality of
the sum for T1(W) foliows immediately from the minimality of the sum for
TT'(A W). However, if d(v)=Minlev(T (W), |v]) +1, w,_;=w, and all nodes of
weight Ju| at distance Minlev(T (W), [v]) from the root must already have two

sons of weight Wu.1=Ww,. From Theorem 1. this is the largest possible number
of nodes of weight w, as close to the root as possible, which clearly minimizes
2 dw). O

vel

Theorem 2. Let f be qa Junction defined for all nonnegative integers and g(x)
=f(x+1)~f(x) for all nonnegative integers. If g is monotone increasing, then
E(T1. )SET.f) and E(T|, [YZE(T. f) for all TeO(W). Similarly, if g is mo-
notone decreasing, then E(T |. SSE(T f) and E(T1. NZET. f) for all Tea(W).

Proof. For all Tes#'(W), we have E(Tf)=E(T'.f)+(w,,_,+w,,) (fA+1
—f(A)) where T'e#(AW) is a predecessor of T and A is the level of the node
to whic.h we add the nodes of weight W,y and w,. If for TN(W)., 4
=oz;Mmlev(TT(W). w,_;+w,). we are done since E(TT(aW). NSET, )

and by Theorem | and the fact that g is monotone increasing (w,_,+w,) (f(4
+1)—f(A)) is the smallest possible increment. In fact. the only troublesome
case occurs when A=« for some T’ and TeH# (W). while A=o+1 for T1(4W)
and T1(W). This can only happen when w, , =w,. In this case. consider T*
and TT(W*) where T*e A (W*) is the largest ancestor of T having no brothers
of weight w, and T1(W*) is the corresponding ancestor of T1(W) where W* is
the corresponding sequence. In particular, if W=w, ZW, 2. >We=w,, =
=w,_,=w, and n—k is odd. W* is the merge of w,=...2w,_, and a se-
quence of (n—k +1)/2 terms all equal to 2w,. If n—k is even. W* depends on
whether w, |, <2w, or not. If We_1 <2w,. W* is the merge of Wi 2w, ,
and a sequence beginning with W, +w, and followed by (n—k)/2 terms all
equgl to 2w, If w, 22w,  W* is the merge of w, 2...>w, | and a sequence
beginning with 3w, and followed by (n—k—2)/2 terms all equal to 2w,.
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Fig. 1 Fig. 2
We know that EgTT(fVKx’;;,Sf;de;Z"‘;eW g

?:&i:ﬁir:atr;\ye (rﬁi(zi+ma)li:y of E(TT(W). f). The ot}.\er érguments A

Note that / need nol be onetcne el

ger. ¢ any real number and f(x)=|x—c|".

tral. at a
_i.e.. all absolute moments (cen
) particular. T 1 has the

.f) and in computing E(TT(W.)‘ f) we
(a+2)—f(a+1))s as possible, es-
are similar. [

negative. As a result

Theorem 3. Let n be a nonnegative inte

174
hen E(T1. YSE(T. f) for all Te#(W). 1.e
;oe;:'" étc.T) ?or W are simultaneously minimized by Tt. In
smallest variance of any TeO(W). . .
ed only show that g(x+1)=g(x), 1e., tha

heorem 2, we ne '
Proof. To 0Pl ere are several cases to consider.

Ix+2—c|"+|x—cl"§2lx+l—cl". Th

Case 1. xzc(x+2=Z¢). " n "
en we need only show (a+2)y +(a) =2(a+1)",

Lot p ominal theorem.

for a2 0. This however follows quickly from the bin

Case 2. x<c=x+1 (x+1<c£x+2).

=Cc—X— hen we need o
Let a=x+1—c (a=c—x .1)3 t wen
+(1—a) for0ga<l, but this is immediate since 24

If we are dealing with codes so that the w/s are p;obab(lilétlei:vxt}l;ystir s
Theorem 3 shows that the distribution of lengths ofh the C(i)m fir o e
lustered more sharply around the mean (or any ot er‘po e
than he distributions for any other Te®@(W). This result. toge il
:E:rst ii this section show why we feel T1 deserves to be called the

Huffman tree.

Note that Th '
Te®(W) as can be seen In Example 1.

nly show that 2a"<(a+ 1Y
n<a"+1<@+). O

i i hat
eorem 2 is false in general if we drop the requirement t

(4

is gi in Fig. 1. Let T be the tree

1. Let W=5,5,2.2. Then T}/Ls given in he tree

E;i‘é’:l’ils Fig. 2. Note that E(TT,e):/ZI. but.E(T. e?.—;}tfi{whzr‘x](:; Fijfg%_f))zﬁl
jgr(x)zac2 Clearly. in this case g(x) is strictly increasing. HOW .

whereas E(T. /)=56.
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