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ABSTRACT

The problem of whether it is theoretically possible to determine antigens and antibodies
in a cross-reacting serological system is analyzed. Conditions are listed which will insure
that the serological operations of absorption, elution, blocking, and counterblocking uniquely
determine antigens and antibodies. There is no restriction on cross-reactivity. The protocol
for counterblocking was given by Denniston and has not been developed by serologists.
Denniston has shown that counterblocking can be replaced by combinations of the other
operations in a system where there can be no cross-reactivity. This paper indicates the
potential usefulness of such a technique.

1. INTRODUCTION

Reference [17] contains a detailed justification for the point of view taken
in this paper. For the reader’s convenience we have reproduced below the
first few paragraphs of [17], but the interested or critical reader should
consult the entire reference.

Immunogenetics has adopted the obvious and perhaps necessary practice
of denoting genes or antigens by letter symbols. Thus, for example, A and B
are ABO blood group antigens, D is an Rh blood group antigen, H-2° is an
allele at the mouse H-2 complex, and HLA-A is a human lymphocyte
antigen. This symbolic representation of genes or gene products has certain
consequences that are not obvious at all but are indeed logically necessary. A
source of great difficulty is that the letters representing, say, antigens do not
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stand for correspondingly well-defined discrete biological entities but com-
plicated residues that are (1) determined by inherited factors and (2) recog-
nized by immunological mechanisms. There is nothing essentially discrete
about either (1) or (2) above. Immunological recognition is certainly not a
discrete phenomenon but depends on continuously varying reaction strengths.
In spite of this difficulty it may fairly be said that immunogenetics has been
successful only inasmuch as it has been able to deal with discrete conceptual
entities that can be denoted by letter symbols and subjected to the rules of
inheritance.

A problem immediately presents itself. If antigens X, Y, and Z have the
property that Y always occurs with either X or Z but never alone, is this a
genetic law: the gene for Y can only be expressed in the presence of X or Z?
Or is it the result of our choice of letters? XY might better be called P, and
YZ called Q. In the latter case the antibodies that were thought to define Y
would now be said to cross-react—to react with P and Q. Immunologists
have almost universally adopted a notational system that precludes cross-
reactivity. If, in practice, a reagent of monoclonal antibodies reacts with
antigens called P and Q, this fact will be explained by attributing to P and Q
some common antigenic factor, say Y. Thus P is ¥ and more, i.e. XY; and
similarly Q is YZ. In this view antibodies are considered as simple (recogniz-
ing only a single antigenic factor denoted by a single letter), and antigens are
regarded as complex (denoted by the totality of all letters necessary to
account for reactions observed with the different simple antibodies). This
rule for making letter assignments has been called the simple-complex code
by Hirschfeld [3], who has also described the complex-simple and complex-
complex codes.

Hirschfeld [7] has carefully documented the experimental evidence for
cross-reacting antibodies and therefore the inappropriateness of always using
the simple-complex code. Mobraaten [11, p. 28] has stated that HLA serology
developed according to a complex-simple interpretation. In the previous
paragraph it was seen how different choices of letter symbols could lead to
either a simple immunological situation with complicated genetic laws or a
more complex immunological situation with simple genetic laws. The precise
connection between these two extremes has been studied by Hirschfeld [5, 6].
Avoiding a notational system that allows for cross-reacting antibodies can
lead to apparent genetic laws, such as inexplicable linkage relations and the
cis-trans effect, which completely disappear when cross-reacting notation is
allowed. Specific real-world examples of this are given in [17].

One notation in serology involves the idea of “specificity.” In [1]
Denniston presents operations on the sets of serological specificities associ-
ated with reagents and tested cells. Thus he denotes by C a set of specificities
associated with cells, by R a set of specificities associated with some reagent,
and (from Table 2 of [1]) the following sets obtained from C and R
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corresponding to the serological operations:

Serological operation Set operation Result
Absorption R-C Reagent
Elution RNC Reagent
Blocking C—-R Cell
Counterblocking RNC Cell

Thus, for example, absorption produces a new reagent with specificities
R — C; counterblocking produces cells with a new set of specificities RN C.

Denniston states [1, p. 106] that “A more extensive discussion, including a
treatment of the problem of ‘cross-reactions,” is in preparation.” The papers
of Sheehy and Denniston [13] and Denniston and Sheehy [2] address the
problem of assigning specificities to stimulating and responding cells in MLC
(mixed lymphocyte culture) testing in a way that remains valid even in the
presence of cross-reactivity. But cross-reactivity does indeed affect the set
operations modeling the four serological operations given above, and this
work has not appeared. It is the purpose of this paper to extend the
operations to a model that allows for cross-reactivity and to analyze the
model to determine how antigens and antibodies can be identified.

In [17] we have given an example that shows that if there is cross-reactiv-
ity in a system incorporating absorption data, a distinction must be made
between recognized factors (antigens) and recognition factors (antibodies).
The notion of specificity can be confusing in a system with cross-reactivity
and in our opinion should not be used. In particular this example shows that
specificities subtract (giving R — C as above) only if by specificity we mean
recognition factor. Thus there is a need to extend the operations to a model
allowing for cross-reactivity.

Also in [17] it was shown that a threefold Boolean factorization of a
reaction matrix M is the important form of a model of an immunogenetic
system. We will denote this factorization here by M =W X Z X E. M gives
observed reactions between cells and reagents (sera). W gives the antigen
content of cells, and E gives the antibody content of reagents. Z defines
antigens in terms of the antibodies recognizing them, and vice versa [14]. It is
shown in [15] that the description of reactions in terms of specificities is
subsumed in the matrix factorization.

It is important to realize here that the model operates on the level of
notation or symbolization and not data. M is a zero-one matrix, and it is at
this point that a reasonable fit must be made to real world data. See for
example the technique in [14, p. 490]. Notice that every attempt at symboliz-
ing immunogenetic phenomena implicitly or explicitly requires such a fit.

Describing the reactions in M in terms of a single set of factors—such as
specificities or the letters in Hirschfeld’s complex-complex code [4]—is
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equivalent to a twofold factorization of M. The number of such factoriza-
tions is very large, and even determining whether a factorization exists
involving factors of a given size is a computationally intractable (NP-com-
plete) problem [12]. It is not feasible therefore to generate all solutions to the
problem and choose from among these the solutions satisfying additional
pertinent conditions. If effector-cell combinations or reagent combinations
(e.g. 1 anti-2X3) are known, it is possible to say a good deal about the
factorization of M into G X E (where G =W X Z). The procedure for de-
termining this factorization is given in [8], [16], and [17]. The problem of
determining antigenic factors by factoring G remains and is again complex
(although G will in general be smaller than M) if more information is not
available.

In this paper we will give conditions that insure that W, Z, and E are
uniquely determined by the four serological operations above.

2. NOTATION

Let C be a set of cells and R a set of reagents involved in some system.
Each cell is considered as a set of antigens, and each reagent as a set of
antibodies. For some i € C let iZ denote the set of all antibodies recognizing
some antigen in i. If » € R, let Zr denote the set of all antigens recognized by
some antibody in r. Then Z defines each antibody by specifying the complete
set of antigens with which it reacts, and vice versa. Z viewed as a matrix has a
one in row k, column / if and only if antigen k is recognized by antibody /. If
there is no cross-reactivity in the system, then z is a one-to-one correspon-
dence between antigens and antibodies.

Analogously to table 2 of [1], we define the four (serological) functions:

Absorption AB(i,r)=r—iZ
Elution EL(i,r)=rNiZ
Blocking BL(i,r)=i—Z2r
Counterblocking CB(i,r)=iNZr

Notice that AB and EL are functions into the set of antibodies and that BL and
CB are functions into the set of antigens. This is in contrast to the operations
on a single set of factors (specificities) in [1]. Notice that our functions reduce
to Denniston’s operations when there is no cross-reactivity, i.e. when Z is the
identity relation.

For the purposes of this paper we take an antibody to be completely
described by its reaction range with antigens: since we consider data to be in
the form of positive or negative test reactions, two antibodies that react in
precisely the same way with each antigen are considered equivalent. Similarly
an antigen is completely determined by its reaction range with antibodies.
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This is formalized by our first basic principle, which is nothing more than a
semantic convention:

PRINCIPLE 1

No two distinct antibodies react with exactly the same set of antigens, and no
two distinct antigens react with exactly the same set of antibodies.

The next principle is again dictated by what an antigen and antibody are.
PRINCIPLE 2

An antibody must react with at least one antigen, and an antigen must react
with at least one antibody.

Notice that by our definitions, if some antibody reacts with a combination
of gene products but not with either one of the products, then this combina-
tion must be considered an antigen distinct from (but of course related to)
the products themselves. It follows that an antibody reacts with a cell if and
only if the antibody reacts with some antigen in the cell. With this under-
standing we can give our third principle, the first part of which states that
certain cells can be excluded from consideration in the data with no loss of
information.

PRINCIPLE 3
No cell reacts with every antibody, and no antibody reacts with every cell.

In situations where reagents are made by taking donor and host combina-
tions, antibodies would not generally be made that reacted with the cells of
the host. Any such antibodies can be easily recognized and excluded. In
situations where less is known about the reagents, reagents that gave uniform
positive reactions with all cells would have to be excluded from the study as
being uninformative.

3. THE IMMUNOLOGICAL SEPARATION CONDITION

It is clear that testing with one or two cells can never reveal a complete
system involving many antigens and antibodies. What is needed is a condi-
tion that insures there are enough cells from different individuals tested to
reveal all the antigens and antibodies in the system.

SEPARATION CONDITION

For every pair of distinct antibodies, there is a cell in C that reacts with one
of the pair but not the other.

In Section 5 we shall see that the four serological operations will reveal
antigens and antibodies (with no assumptions about cross-reactivity) in any
system satisfying the basic Principles 1-3 and Separation Condition. In the
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next section we will give genetic conditions that are sufficient to satisfy these
requirements.

4. THE BASIC GENETIC CONDITION

The predominant pattern in well-known immunogenetic systems is one of
codominant alleles. In fact, examples have been given in [14] that show that a
premature assumption that reagents or antibody species are monospecific can
lead to a notation that would incorrectly suggest a system that violated the
rule of codominant alleles. By a simple genetic system we mean a system
where genes are codominant and each antigen is coded for by a single gene.
This puts genes and antigens in a one-to-one correspondence. The scheme of
the next section, which will uncover antigens and antibodies and their
relation, will therefore also uncover the genetics of the system. A simple
system is a special case of a first order system as defined in [14].

By a complete system we mean a system of haplotypes (or a system
including all homozygous individuals) where all possible recombinants are
present. This is the genetic condition that insures that the separation condi-
tion holds, i.e., that there are enough individuals (cells) being tested to reveal
the system,

GENETIC CONDITION
The system is simple and complete.

We can now show that the genetic condition implies the immunological
separation condition as follows. Suppose the simple genetic system has three
loci and three alleles at each locus. Suppose a, b, c are the alleles at the first
locus; d, e, f are the alleles at the second locus; g, h,i are the alleles at the
third locus. (Note that the argument which follows works for any number of
loci and any number of alleles at each locus. However, to avoid cumbersome
notation the argument has been presented in this very concrete form.) Given
two antibodies a and B, Principle 1 implies that they react with different sets
of antigens. With no loss of generality, it may be assumed that a reacts with
the antigen coded for by 4, but 8 doesn’t. By Principle 3 at least one of a, b,
or ¢ must code for an antigen which does not react with B, since each cell
must contain an a, b, or ¢, and B8 cannot react with every cell. Again, without
loss of generality it may be assumed that B8 does not react with the antigen
produced by a. The third locus may be analyzed similarly, and it may be
assumed that B does not react with the antigen produced by g. Observe now
that the haplotype adg will produce at least one antigen reacting with a but
no antigens reacting with 8. Thus the separation condition has been satisfied.

5. RECOVERING ANTIGENS AND ANTIBODIES

The four operations absorption (AB), elution (EL), blocking (BL) and
counterblocking (CB) will allow the total elucidation of the antigen-antibody
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situation whenever the three Principles and Separation Condition hold. This
process can be broken into the following two stages.

(1) Use absorption and elution to reduce reagents until no new reagents are
created. The final reduced reagents will contain equivalent antibodies.

Observe that the reagents obtained at this stage should theoretically agree
with reagents of monoclonal antibodies. There is a danger (elaborated below)
in using monoclonal antibodies without going through procedure (1), since it
is this procedure that theoretically guarantees enough diversity in (cross-
reacting) antibodies to identify the antigens in the system. Thus cloning
ought to take place after the procedure (1). The analysis of procedure (2), is
dual to (1), so that the analysis we will offer for (1) can be applied for (2).

(2) Use the antibodies produced in (1) together with blocking and counter-
blocking to uncover the antigens.

In stage (1), whenever a cell, J, reacts with a reagent, r, it is possible to
construct two new reagents: AB(i, r) and EL(i, r). Here AB(i, r) is defined to
be the set of all antibodies in reagent r except those reacting with an antigen
in cell i, and EL(i, r) is defined to be the set of all antibodies in r that do
react with i. If AB(i, r) fails to react with any cell, then EL(i, #) = r and no
new reagents have been produced. When AB(i, r) is not the empty reagent, so
that neither AB(i, ) nor EL(, r) is the empty reagent, then both AB(i, r) and
EL(i, r) are reagents differing from r and are called the sons of r. Every
reagent r gives rise to a tree of descendants of r with r at the root and each
node being connected to its sons. Figure 1 is an example of a small tree of
this kind. In this case, » has five descendants (counting r itself) which are of
two kinds; reducible and irreducible.

Notice that ry, r;, and 7, are irreducible in the sense that further absorp-
tion and elution were unable to yield any new reagents. However, r and r, are
reducible, since r decomposes into r; and r,, and r, decomposes into r; and
7.

rl=AB(i|,r) ro=EL(i},r)

ry=AB(i,,r,) ra=EL(i2,r2)

Fi1G. 1.
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Irreducible descendants can only contain equivalent antibodies. To see
this, suppose r is a reagent containing at least two distinct antibodies « and
B. By the Separation Condition, there is a cell / reacting with exactly one of
them, say a. Thus « is in EL(i, r), but not in AB(i, r), and B is not in EL(i, r)
but is in AB(i, r). By Principle 2 every antibody must react with some cell, so
that both EL(i, r) and AB(i, r) are recognized as sons of r, and r cannot be
irreducible. Thus the procedure to reduce a reagent consists of performing
absorptions and elutions until all the irreducible descendants have been
found, at which point the reagent is totally decomposed into antibodies.

Several observations will help systematize this process and reduce the
amount of work involved. First, in reducing a reagent, there is no need to use
cells which do not react with the given reagent. Second, once a cell is tested
against a reagent r, and perhaps even used to decompose r, there is no need
to use the same cell in working with any of the descendants of r.

There are also two observations which are useful for estimating the
amount of effort which is involved in reducing a reagent by using the process
described above. First, the number of irreducible descendants is exactly equal
to the number of antibodies in the original reagent. Second, the number of
irreducible descendants is exactly 1 greater than the number of reducible
descendants (this follows from a simple inductive argument). Thus in any
tree, r will have 2n — 1 descendants, where n is the number of antibodies in 7.

Given a reagent r which reacts with m cells iy,...,i,,, no more than
roughly m? operations (depending on how operations are counted) are
required either to decide that r is irreducible or to decompose r into two new
reagents. In particular, first produce EL(i,, r) and AB(i, r), and test the latter
with i,,...,i,, to determine whether r has been decomposed or not. If r has
not been decomposed, i, can be dropped from further consideration, because
every antibody in r reacts with i; and thus every descendant of r would react
with i;. Thus to eliminate i; requires constructing EL(i;, ) and AB(/,, r) and
testing the latter against the m —1 cells i,,...,i,,. If AB(i;,r) proves com-
pletely inactive, produce EL(i,, ) and AB(i,, r) and test the latter against the
m—2 cells iy,...,i,. By proceeding in this way r can either be decomposed
or shown to be irreducible. In all this process requires at most m —1 elutions,
m —1 absorptions, and at most (m—1)+(m—2)+--- +1=m(m—1)/2
reaction tests. Since r has 2n —1 descendants (where n is the number of
antibodies in r), the total number of operations is at most (2n —1)(m —1)
elutions, (27 — 1)(m —1) absorptions, and (2n —1)m(m —1)/2 reaction tests.
Note that these numbers are just upper bounds, since the number of cells
used decreases when we work with the descendants of r. Refining these
estimates further would require much additional analysis, which would not
be terribly appropriate here. The chief point of the preceding discussion is to
provide a simple upper bound on the amount of work needed to completely
decompose a reagent into antibodies.
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Stage (2) is very similar to stage (1) with the roles of cells and reagents
reversed, counterblocking replacing elution and blocking replacing absorp-
tion. Note that the appropriate versions of Principles 1-3 hold for antigens at
the beginning of stage (2). To see this, observe that Principles 1 and 2 are
perfectly symmetric with respect to antigens and antibodies, Since the
reagents are now simply sets of equivalent antibodies, we have the ap-
propriate form of Principle 3: No antigen reacts with every antibody, and no
antibody reacts with every antigen. However, this is an immediate consequence
of the original Principle 3. The appropriate form of the Separation Condition
is: Given two distinct antigens a and b, there is an antibody o which reacts with
one of the antigens but notr with the other. This is now a consequence of
Principle 1.

Thus in the same way that stage (1) reduced all the reagents to antibodies
by using elution and absorption, stage (2) will reduce all the individuals to
antigens by using counterblocking and blocking,

6. SUMMARY
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