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Mathematical Immunogenetics I argued for the development of mathe-
matics as a language for immunogenetics. A three-fold factorization of a
reaction matrix was seen to be the important form of a mode! of a first
order immunogenetic system. In the present paper, results of the authors
on determining this factorization are reworked from a physical perspective
and presented 1n an algorithmic form that can be used to compute a
labeling matrix from data. Computer programs to perform these computa-
tons are in preparation.

1. Introduction

In Mathematical Immunogenetics [ it was seen that the important form of
a model for a first order immunogenetic system is a 3-fold Boolean factori-
zation M = € x 9 x & of a reaction matrix M. The problem of determining
this factorization depends for its solution on applying information other
than that contained only in the reaction matrix M. We shall see in this
paper how information about stimulator/responder combinations used in
producing reagents or their cell-mediated analogs can be used to gain
information on this factorization.

[n this paper the mathematical results of Markowsky & Wohlgemuth
(1980) and Wohlgemuth & Markowsky (1981) will be reworked from a
physical (biological) standpoint and we shall see their implications for using
mathematics as a language for immunogenetics. In addition to these two
papers the works of Denniston (1976) and Nau er al. (1978) also consider
absorption information. In all of these works, and indeed in all work known
to us, it is assumed that “absorption”—or its equivalent for cell-mediated
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phenomena—subtracts factors. While the latter two works refer to these
factors as ‘“‘specificities” an example in Mathematical Immunogenetics [
shows that only recognition factors subtract. Recognized factors do not.
Thus we consider it dangerous to use the term “‘specificity”. In all
immunogenetic systems where cross-reactivity cannot be ruled out a priori
“specificity’” must be interpreted as ‘“‘recognition factor” when subtracted,
as in absorption. We will use the word “antibody” to denote such a
recognition factor in this paper. Thus we use serologic language but the
model is more general.

Thus if M=€ x9 x¥&, € labels individuals with antigens (recognized
factors), & labels reagents with antibodies, and 2 defines antigens in terms
of antibodies and vice versa. In application, & represents the set of produc-
ible antibodies for the system under investigation. If there is no cross-
reactivity then 9 is just a one-to-one correspondence between the antigens
in the system and their corresponding antibodies. In this case there is no
mathematical (or linguistic) distinction necessary between recognized and
recognition factors. If there are n antigens there could imaginably be a
total of 2" different antibodies in a system as they are identified by their
reactions with the antigens. This does not seem to be the case for real
systems although it is difficult to say this for certain since in many cases
the real systems in question have been conceptualized assuming % to be
merely a one-to-one correspondence. In this paper we make no assumptions
about 9. The producible antibodies may be any subset whatever of the set
of imaginable antibodies. There are also no restrictions on cross-reactivity.

The matrix product 4 =€ <9 labels individuals with producible anti-
bodies and the factorization M=% X% x & becomes M =¥ x & Since this
factorization labels both individuals and reagents with recognition factors,
it 1s this factorization that absorption information uncovers. For the sake
of illustration we will consider as our Example 1 the example of
Wohlgemuth and Markowsky in Mathematical Immunogenetics [ for 4 =
€ x 9 reproduced here in Fig. 1.

K7 é: 2

a 8 Y a b c a 8 Y
1 1 0 1 1 1 0 1 a 1 0 0
2 1 0 0 = 2 1 0 0 x b |0 1 1
3 0 1 1 3 0 1 0 c 0 0 1

Fi1G. 1. The labeling matrix. 4 = € x 3.
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We will explain our results using the language of sets. No mathematical
>arguments will be presented. Results that do not follow from the develop-
ment but come from Markowsky & Wohlgemuth (1980) or Wohlgemuth
& Markowsky (1981) are marked by a (*).

For an individual i, the set of all producible antibodies labeling i is
denoted by (9. If S is a set of individuals, the set of all producible antibodies
labeling any individual in S is denoted by $% Recall that an antibody
labels an individual / if and only if that antibody can be produced and
reacts with some antigen of (.

Let

8(, 1y =j%—1%.

In words &§(j, ) is the set of all producible antibodies labeling j except
those labeling individual /.

Let{ anti-j denote the reagent obtained by using individual j as stimulator
and individual / as responder. We take as an hypothesis for this paper that
8(j, 1) is the antibody content of reagent [ anti-j. It is clear that the content
of [/ anti-j must be a subset of §(j, /) (in any model worth investigating).
Some justification for our hypothesis will be given below after we have
introduced some more terminology. '

In mouse serology it is found that the content of the reagent m x{ anti-f
is the same as the content of [ anti-j with m absorbed or m anti-j with /
absorbed. There is an equivalence of using F, responders and absorption.
Our hypothesis is consistent with this. Also notice that the equivalence of
m anti-j with [ absorbed and { anti-j with m absorbed demands some sort
of explanation in the model. If m anti-j contains only a subset of §(j, m)
and /[ anti-j contains only a subset of §(;,!) there would seem to be no
reason why absorbing with { and m respectively would lead to reagents
that had the same reaction patterns.

In keeping with the ideas of the previous paragraph we extend our

hypothesis as follows: If § ={s,, ..., si} (a set of individuals) we consider
the reagent s, anti-j with s,,..., s, absorbed to have antibody content
8(j, §). Note that this should be the same as s, anti-j with sy, 52, ..., S«

absorbed if our hypothesis is correct. And this would seem to agree with
experimental results.

Another paper which investigates a weaker hypothesis is in preparation.
Many of the ideas of this present paper carry through with some
modification but we prefer the current hypothesis largely because of the
symmetry it gives in the notation (which we will shortly explain) and because
we have seen this symmetry in the raw data we have seen. The weakened
hypothesis would not seem to support this symmetry.
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2. The Boolean Model

We now work backward from a fixed but unknown ¥ to data required
to determine ¥. For an integer k =1 let the reaction table R(%, k) be
defined as follows.

(1) Rows are all individuals i € #.

(2) Columns are all pairs (f, S),j € £, S <. where |S| <k (S is a set with
k or fewer elements).

(3) the entry in row i and column (4, S} is the set of antibodies labeling
row i and also column (j, S). This set is denoted by A(i, j, S).

Thus, A(, ], S)=i9n6{(;,S)=i94nj4~S5% The symmetry in our
hypothesis lacking in the weaker hypothesis is that A(i, /, $) = A(j, i, S).

Let # be the set of individuals tested and define the Boolean reaction
matrix M(%, k) with rows corresponding to each i € # and columns corre-
sponding to each (j, S}, [S|<k. M(%k,) has a one in row i, column (j, S} if
A(i, , ) # 0 (is not empty) and zero otherwise. If the entry in row i column
(7, §) is one we write iM(j, S)—if it is zero we write 1/M(j, §). It is easily
seen that iM(j, §) if and only if an antigen labeling / reacts with an antibody
in §(j, S). Thus M(Y, k) plays the role of a zero/one reaction matrix which
can be taken as data. In histo-typing using F, responders, &k = 2. In serologi-
cal tests for a given k we are considering k — 1 absorptions.

Note that M(%, 1) can be considered as a subset of the results given in
M(%, 2). If n is the number of individuals in the data, then M(%, n - 1)
gives information on all possible tests involving any number of absorptions.
We call M(9, n — 1) =M(¥, w). Thus

MG HeM(¥92)c ... cM(% w).

In the same way we get

R(9% 1)cR(9Y 2)c .. cR(Y w).

R(%, 1) and M(¥, 1) for the ¢4 of Example | are given in Fig. 2. Antibodies
labeling each row and column are given.

Suppose part of a reaction matrix is given as in Fig. 3.

Here 1 is used as stimulator for all reagents considered and n is 7.
Because of the 1 in row 4 column (1, 2), individual 4 and individual 1 must
be labeled by a common antibody say «. Further, @ must also label 5, 6
and 7 since absorbing by 5, 6 and 7 gives zeros in columns (1, 5), (1, 6)
and (1, 7). Therefore, the set {1, 4, 6, 7} must be a subset of the reaction
range of a. The reaction pattern in Fig. 3 implies the existence of an
antibody whose reaction range includes {1, 4, 5, 6, 7}. {1, 4, 5, 6, 7} 1s
called a 1-fragment (from k = 1). If there is an antibody a whose reaction
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(a) 8. D
0 Y a 8 @ a B By ]
(L) (12 (L3 @1 (2,20 (2.3 Q3.1 (3.2 (3.3
ay 1 ] Y a [} ) a [} % [’}
4 a 2 [} [’} a [’} 0 a [} () [}
By 3 /) Y 0 4 [} 2 B8 By (%]
(b)
[} Y a (/] () a B By [%}
(1L1) 1,2y (L3 (2.1 2.2 (@3 @0 (3.2) 3.3
ay 1 0 1 1 0 0 1 0 1 0
4 a 2 0 0 1 o] 0 1 0 0 0
By 3 0 1 0 0 0 0 1 1 0

F1G. 2. (a) R(%, 1) and (b) M(¥%, 1) for the ¥ of Example 1.

(1.2) (1,3 (1,4 (.5 Q.6 Q.7)
a [ 1 0 0 0 0

F1G. 3. Part of some M{%, k)

range is precisely {1, 4, 5, 6, 7}, a is called 1-tractable. This is the biological
view of the idea of a fragment.

Recall that if there is a one in row ¢/ and column {j, m) of M(1) we denote
this by iM(j, m). A zero in this position is denoted by —/M({;, m). For a
fixed i, j if iM{j, m) for all m then no individual makes an antibody
attacking / and j: One way to have —/M(;, m) for all m is that there is
an antibody « labeling [ and j but « labels every other individual as well.
a would then label no reagent and have no effect on reactions. We make
the assumption in this paper that no antibody has a universal reaction
range—a clearly uninteresting situation in our model. The only other way
to have —1/M(j, m) for all m is that/ and j have no common antibody label.

Definition. For any pair {, j of individuals define F{i, j) as follows:

(1) If 7iM{j, m) for all m, let F(i,j) =0.

(2) Otherwise, let F(i,j) be the set of all m such that —~iM{j, m).
Non-empty sets F (i, j) are called 1-fragments.

Note that F(i, /)= F(j,{)and i, e F(i, /) if £(1, /) #0.

Definition. For any pair of individuals i, j and any subset S of individuals
of size |S| =k —1 define F(i, , S) as follows:
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(1) If ~iM(j, S), let F(i,/,S)=9.

(2) Otherwise let F(i, j, §) be the set of all m such that 2 iM{(j}, S +m).
(Here S +m =S u{m}).

Non-empty sets F(i, , S) for [S| <k ~ 1 are called k-fragments. Note that
i, are in the fragment F (i, j, S) and F(i, j, §) = F(j. i, §). Suppose we have
some fragment F(i, j, §). Then there is an antibody « labeling i and j which
is not absorbed out by S since iM(j, s). Since iM(j, S +m) for me
F(i, ], 5), @ must label m. Thus %a (the reaction range of a) must include
the set F(i,j,S) and not intersect S. An antibody that is equal to a
k-fragment is called k-tractable and is called tractable if it is k -tractable
for some k.

Note that k -fragments can be computed from the matrix M(%¥, k) = M(k)
and in fact the matrix M(k) can be recovered if all the k-fragments are
known. The model that uses the matrices M(k) as data from which to
determine ¢ will be called the “Boolean model”. In order to use the
Boolean model it is necessary to distinguish the presence or absence of a
reaction in each row ¢ and column (j, S).

If we delete an antibody a from the relation ¥ (denoted by 94 - «) the
effect on any matrix M(k) would be to possibly change some ones to zeros.
We denote this by M(¥9 —a, k) =M(%, k). If equality is preserved, then a
is called k-Boolean-undetectable. Thus a is k-Boolean-detectable \f M(% -
a, k) #M(9, k). a is called Boolean-detectable if it is k-detectable for some
k, that is, if M(4 —a, w) # M(%, w). An undetectable antibody is therefore
one that has no effect on a reaction matrix obtained by any number of
absorptions—its action will always be masked by the reactions of other

(a) a B vy & ¢ (b} g v & ¢
1 (1 1 1 0 o0 ot 00
211 1 0 1 0 2 0 10
3 {1 0o 1 1 0 3 0 1 1 0
40 0 0 0 1 4 |0 0 0 1

o

Y B afly & B aBs 8 y avyd £ €

(1,2) (1,3) (1.4) 2.1) (2.3) (2.4 (3.1 (3.2) 3.4) (4. 1) (4.2) {4.3)

aBy 1 1 1 1 ] 1 1 0 1 1 0 0 0
affs 2 4] 1 1 1 1 1 1 0 1 o] 0 [¢]
ays 3 1 [¢] 1 1 0 1 1 1 1 0 0 0

e 4 0 0 0 0 0 0 0 0 0 1 1 1

FiG. 4. Example 2, a Boolean undetectable antibody a in 9 (a} 9: (b) G- () M(% 1) =
M(4-a,l)



MATHEMATICAL IMMUNOGENETICS II 431

antibodies. The condition that an antibody be undetectable is given in
Theorem 1 below. In the following example (2) antibody « is undetectable.

In M(1) of Fig. 4(c) we have omitted the useless columns {(J, j). Observe
that deleting a from ¥ has no effect on M(1). It is clear that deleting
has no effect on M(w) so a is Boolean-undetectable.

The condition on ¢ that an antibody be undetectable is given in terms
of the reaction range of antibodies. For any antibody « in ¢ the set of all
individuals that are labeled by « is written %a. In Example 2% =11, 2,3},
9B ={1, 2}. % ={4}.

In fact for us an antibody is defined by its reaction range so we may
think of a as the set {1, 2, 3}. With this terminology notice that « is the
union of B, vy and 8. Moreover, this union is of a special kind since for any
pair {,j of individuals in « (i.e., in the reaction ragne of a), i and j will
be in 8, y or 8. Theorem 1 (*) below states that this is precisely the way
in which an antibody must be Boolean-undetectable.

Definition. A subset S<{1,2,... ,N}isa pair-undetectable union of its
proper subsets Ty, T2, .. -, T if

k
(1) U T and
i=1

(2) for any pair j, { € § there is some T, such that/, (e T.

Theorem 1. An antibody is Boolean-undetectable if and only if it 15 a
pair-undetectable union of other antibodies. ]

3. The Fragment-Cofragment Model

Fragment F(2, 1, 4) can be calculated from the piece of R(%, 2) found
in Fig. 5. We define the cofragment C(2, 1. 4) as the set of all individuals
Dm for which A(2, 1, 4)#A(2, 1, 4+m), that is, we compare the number
of antibodies that row 2 (a, 8, 8) has in common with reagent (1, 4) and
with reagent (1, 4 +m) for each m = 1, 2.3, 4.

We see that for m=1, 2,3, A2, 1, 4+m)=0,0, {8} respectively, and
for m=4 A2, 4+m)={a, B} =A(2, 1, 4). Under appropriately designed
experimental conditions one would expect tosee a reaction in row 2 column
(1, {4, 3} which is a reduction of the reaction in row 2 column (1, 4), since
A2, 1, 4)={a, B} but A(2, 1, {4, 3}) = {B}. Cofragments are defined as sets
of individuals for which we see reduction in reaction strength. These include
fragments where we see a reduction to no reaction at all. Formally we have

the following.
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(a) aBy 0 Y B afy
1,4 (1,{4.1p (L{4.2h (1,{4.43) (1.{4.4]

afl§ 2 af [/} ¢ 8 af

(b) F(2,1,4)={1, 2} {c) C(2.1.4)={1,2.3}
since 2M(1,{4,1}) since 0=A(2,1,{4,1})cAa(2,1,4)={c. B}
and —2M(1,{4, 2}) and 0=24(2,1{4, 2}ic A2, 1, 4) = {a, B}
but  2M(1,{4, 3} and {8} =A(2, 1{4,3) < A(2. 1, 4) = {a, B)
and 2M(1, {4, 4}) but {a. BY=4(2,1{4,4}) = A(2, 1, 4) = {a, B}

FI1G. 5. (a) Part of the reaction table R(%, 2) for 4 of Example 2 plus calcuiations of (b)
F(2,1,4)and (c) C(2, 1, 4).

Definition. For [S§|<k —1 define
F(9 7,8 ={m|A(,jS)#Band A((,}, S +m) =0}
C(9,0,,8)={m|A(, [, $)# A, [, S +m)}

Fragments and cofragments are defined mathematically, working back from
49, in terms of antibodies in the entries A(f, 7, S). In using the model to
determine ¥, the sets of fragments £ (i, j, §) and cofragments C(i, j, S) are
used as data. The table R(¥, k) is not available. The matrix M(¥, k) can
be used to determine fragments as in the Boolean model but cofragments
must be calculated from data using reaction strength comparisons: full-
reaction, partial-reaction, no-reaction.

Mathematically there is a dual relation between fragments and cofrag-
ments. Fragments are intersections of antibody reaction ranges—cofrag-
ments are unions.

Theorem 2(*).

@) F@,,8S) = caus G-

®) CU,,8)=Usesiss) %

Since « in Example 2 is Boolean-undetectable, deleting a from ¢ will
have no effect on fragments. But deleting a does affect cofragments. In
particular C(%,2,1,4)={1, 2,3} and C(9 —a, 2, 1,4) ={1, 2} for the pre-
ceding example. Thus detectability is somewhat sharper using the fragment-
cofragment model.

Definition. An antibody « is called k-fragment—cofragment undetectable
if ¢ and ¥ —a give the same sets F(i,/, S) and C(i, [, S) for [S|<k — 1. An
antibody is called fragment—cofragment undetectable 1f 1t is k-fragment-
cofragment undetectable for all &.
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Definition. A subset S<{1,...,n}is a triple-undetectable union of its
proper subsets T, T3, ..., Tk if

k
(1) S=tJ T and

i=1

(2) for any triple j, [, m € S there is some T; such thatj, [, me T,

Theorem 3(*). An antibody is fragment-cofragment undetectable if and
only if it is a triple-undetectable union of other antibodies. {J

To provide input for the fragment-cofragment model an experimenter
would need to decide which reactions in row i, column {/, §) are positive
and for each of these which reactions in row i, column (j, S +m) are as
strong as those in row i, column (j, §). Note that since A(;,/,S+m) is a
subset (perhaps proper) of A(f, j, §) we avoid comparing reaction strengths
of different antibodies. [n order to use cofragments it is therefore necessary
to have an experimental procedure that makes comparison of reaction
strengths for various columns and the same row meaningful. It is perhaps
more natural experimentally to obtain a meaningful comparison between
various rows for the same column (reagent). However, detectability in
models using the latter comparisons is no sharper than in the Boolean
model.

Tractable antibodies are those that are by definition obtained as frag-
ments. The following theorem states that if we are given enough information
(i.e. given M(w)) all Boolean detectable antibodies are obtained in this way.

Theorem 4(*) An antibody is Boolean-detectable if and only if 1t is
tractable. [0

Working with fragments is then a conservative approach to finding ¢ which
will reveal all detectable antibodies in time. Using the fragment—cofragment
model gives more information in that at any stage (k =1, 2,...) we can
have some idea of how far away we are from an antibody. In particular,
Theorem 2 shows that F(i,, S) is a lower bound for the reaction ranges
of all antibodies labeling iG and §(j, §), and C(i,}, §) is an upper bound.
Thus if F(i,j,§)=C(,},S) there must be some antibody a such that
Ya =F(i,],S). Also if |C(i,j, S)| is one larger than |F(i, j, S)| then both
C(i,j,8)and F(i, ], S) are %a and 93 for antibodies a and S.

If complete information is not available we would like to find a best
possible solution to the problem of finding 4 and to know how close we
are to finding the ‘“‘real” 4. ‘

We describe this first for the Boolean model when only M(1) is known
as data.



434 G. MARKOWSKY AND A. WOHLGEMUTH
4. Solutions in the Boolean Model from M(1) as Data

Let 1, be the set of all 1-fragments obtained from M(1). We wish to
make precise the sense in which (1; can be considered a “solution®” to the
problem of discovering 9. First, 1, is a set of subsets of individuals. Since
from our viewpoint an antibody is completely determined by its reaction
range we can view each fragment in (1, as an antibody that reacts with the
individuals that are contained in the fragment when we view it as a set.
Thus Q, can be viewed as a relation from the set of individuals to the set
of antibodies. Second, if we calculate M(Q,, 1) we get precisely M(%, 1)(*).

Definition. A relation R from the set of individuals is a Boolean solution
for k to the problem of finding 4 if M(R, k) =M(¥, k). If every “‘antibody™
in R is detectable we call R a detectable solution for k.

We have the following result.

Theorem 5(*). (1, is the largest detectable solution for k = 1. [f R is any
other solution for k =1, the elements of R are cither in (), or undetectable
unions of the fragmentsin ;. O

A word about the interpretation of Theorem 5. If an element in R is
“built up™ as an undetectable union of elements in {1, these elements need
not all appear in R. For example, {1, 2, 3} is the undetectable union of
{1, 2}, {1, 3} and {2, 3}. If all four of these sets occur in R, then {1, 2, 3} is
undetectable in R. If, however, the last three sets occur in (1, and only
{1,2,3}, {1, 2} and {1, 3} occur in R, then {1, 2, 3} is detectable in R. It is
therefore possible to have many detectable solutions for k =1. This
(mathematical) difficulty is ultimately resolved (in theory) by enough
absorptions as the next theorem shows.

Theorem 6(*). There is one and only one detectable solution for
k=w O

The unique solution of Theorem 6 is obtainable using fragments. The
procedure is also used to find largest detectable solutions for all k = 2.

5. Boolean Solutions from M(k), k=2

For & =2 it is not true that (), the set of all k-fragments is a solution.
The procedure for determining the largest detectable solution for a given
k can be given algorithmically:

(1) Start with Q. the set of all k-fragments. [f M(Q,, k) = M(%, k), then
undetectable unions can be deleted from (1, to obtain the desired result.
In general, however, M(%, k) < M(Q,, k) and there may be zeros in M(¥, k)
that correspond to ones in M(Q, k). If ~iM(%, kX}. S), but iM(Q,, k)
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(/, S), then it can be shown that S can be taken minimal in the sense that
iM(Qy, k)(j, S —t) for all t€S. Further, there is some fragment B in ),
that contains i and j and misses S. In this case change Q) by deleting B
from it and adding to it all sets B + for each t € § to obtain a new set Q.

(2) If M(Qi, k)<M(Y, k), then the procedure of (1) can be repeated
replacing Q, with ;.

(3) Repeating 1 and 2 above will eventually yield a set 1f where
M(QF, k) =M(¥, k). Deleting undetectable unions from Qf yields the

largest detectable solution.

Theorem 7(*). For a given k, the largest detectable solution ) is obtained
by deleting detectable unions from the set (1 obtained by the preceding
algorithm. If R is any other solution for &, the elements of R are undetect-
able unions of the elementsin Q.

If the complete matrix M(w) is known there is a more direct method of

determining (1.

Theorem 8(*). Let F =(i,/,S) be a fragment. F(i,},S) is %x for some
antibody « if and only if iIM(j, # — F) where # is the set of all individuals
not in the fragment F. [

Thus if M(w) is known we can calculate a list of all fragments. For each
fragment F' we can look to see if iM(j, # — F) and delete F from the list
if not. This procedure will give all detectable antibodies in ¥.

6. Solutions in the Fragment—Cofragment Model

We need to have k =2 in order to use the fragment—ofragment model.
In this case we have the set of k -fragments as data. The notion of detectabil-
ity is somewhat sharper in this model but we can use the same definitions
in the present context.

Definition. A relation R from the set of individuals is a fragment-
cofragment solution for k to the problem of finding ¢ if F(R,i,j,S)=
F(%,i,j,8)and C(R,,},S)=C(9,i,j,8)foralli,jand [S|=k —1. If every
“antibody” in R is (fragment-cofragment) detectable we call R a detectable
solution for k.

Analogous to Theorem 6 we have also in this model:

Theorem 9(*). There is one and only one detectable solution for
k=w [

[f not enough is known to determine ¥ uniquely (up to detectability) it
ts still possible to define a best solution in the manner of the two previous
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sections. The procedure is somewhat easier conceptually but may be slower
computationally in some cases.

Definition. For any k =2 let (), be the set of X €.# for which we can
find i, /, S such that X = F(;,/,S)=C(,}, S) for [S|<k —1 plus the set of
all Y€ # such that F(i,/,S)c Y < C(i,},5) for |S| =k - 1.

Definition. H =Qy —{Y cQ,|forsomex,y, Twehavex,ye Y, YT =
fand " F(x,y, T)S Y <Clx,y, T}

Theorem 10(*). Deleting triple-undetectable unions from H gives the
desired best possible solution. O

H is the only solution of Theorem 9 if k = w. For other & we have that
the elements of any other solution are obtained as triple-undetectable
unions of the elements in our best solution. In both models, best solutions
converge to the essentially unique solution for increasing k.

7. Experimental Design

If ¢ is a solution labeling tndividuals with detectable recognition factors
(antibodies) and if ¥ is used to determine recognized factors in € according
to 4 =€ x P then since any undetectable antibody is a union of columns
of ¥ it is a union of columns of €. Hence, € is still a factor of the matrix
¥ augmented with any combination of undetectable antibodies. Thus
undetectable antibodies have no effect on the determination of recognized
factors (antigens or genes or antigenic determinants).

The preceding material can influence experiments designed to determinc
4. There is no design using our data that will reveal undetectable antibodies.
On the other hand undetectable antibodies have no effect on determining
antigenic or recognized factors. Complete data is sufficient to uniquely
determine detectable antibodies, but in general if only data for &k <w 15
known some ambiguity about detectable solutions is left unresolved. Even
for k <w a best possible solution does however present itself and this may
be sufficient in a practical situation.

M(k) has n Y52, (") columns and n rows. Here (";') is the binomial
coeflicient “‘n — 1 choose i.”” This gives us n? Y5, ("7Y) tests which poten-
tially might need to be done to determine M (k). Even for small n and &
this number grows rapidly. For n = 10 and k& =3 we have 4600 potential
tests. Much of the information resulting from these tests is repetitive and
could be used to check the consistency of the data. Alternatively, a system-
atic way of avoiding the need to do all tests is suggested in Markowsky &
Wohlgemuth (1980).
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It is seen from the models that if use is made of reaction strength,
comparisons should be meaningful between reactions of a single individual
with various sera. Due to the lack of symmetry in the model, comparisons
between reactions of a single reagent with various individuals do not provide
equally useful data. .
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