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Abstract. In this paper, we show that every incline consisting of Boolean ma-
trices of a given finite size is a subincline of a specific family of such inclines, and
consider the question whether every finite incline is embeddable in the semiring
of Boolean matrices.
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1 Introduction

Inclines are a generalization of Boolean and fuzzy algebras, and can repre-
sent intensity of relationships in a more dynamic way.

Definition 1.1. An incline is a set X on which are defined binary oper-

ations, denoted by + and -, satisfying the following axioms (a,b,c € K):
(1) + is commutative: a+b="b+ a,

(2) + and - are associative: a + (b+ ¢) = (a + b) + ¢, a(bc) = (abd)c,

(3) - distributes over +: a(b+ c) = ab+ ac, (b+ c)a = ba + ca,

(4) + is idempotent: a + a = a,

(5) the incline property holds: a + ac=a,c+ac=c.

*This work was completed in January 1994.
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Thus, an incline is a semiring with idempotent addition, in which the
product with a suitable ordering is less than or equal to either factor. Prod-
ucts reduce the value of quantities and make them go down, which is why
these structures were named inclines. Inclines were invented by Z. Q. Cao.
A good basic reference on inclines is [4]. Note that [4] deals primarily with
commutative inclines, i.e., inclines having a commutative product operation.
Noncommutative inclines are discussed in [4, Subsec. 3.6].

The three most important inclines are given by the following examples.

Ezample 1. K, is the fuzzy algebra [0, 1] under maximum and minimum.
Ezample 2. K, is [0, 1] under min{z,y} and min{z + y, 1}.
Ezample 8. K3 is [0, 1] under max{z,y} and zy.

Finitely generated inclines have a strong ascending chain condition. In-
clines representable in products of linearly ordered inclines must satisfy
relations such as min{az, by} < az + by (see [3]).

The incline theory is closely related to the lattice theory. To establish the
connection more clearly, we briefly review some definitions from the lattice
theory. A lattice is a poset in which the supremum and infimum of any
finite subset exist. A semilattice is a set with a single binary, idempotent,
commutative and associative operation. A finite semilattice (S, +) with 0
is a lattice under the ordering y < z if and only if £ +y = z. In this case, +
is supremum and the sum of all elements less than or equal to both of two
elements is the infimum of those elements.

A lattice is said to be distributive if the operations supremum and infi-
mum satisfy both distributive laws. Every distributive lattice is an incline
under supremum and infimum. The additive semigroup of any incline with 0
is a semilattice. Thus, an incline with 0 (any finite incline must have 0 as the
product of all its elements) is a semilattice-ordered semigroup. Conversely,
every lattice with 0 has a trivial incline structure in which multiplication is
0. Throughout this paper, we identify the supremum operation of lattices
with + and the infimum operation of lattices with x.

Binary relations on any set form a semiring under the operations of union
and composition. For a set of n elements {z;,--- ,z,}, this is isomorphic
to the semiring of n x n matrices over a two-element Boolean algebra {0, 1},
where we set a;; = 1 or 0 according to whether (z;, z;) belongs in the binary
relation. Accordingly, these matrices are known as Boolean matrices. We
will denote the set of n x n Boolean matrices by B,,.

Definition 1.2. The row space of a Boolean matrix A is the set of all
Boolean linear combinations of rows of A. It is also {v4 : v € {0,1}"}.

The row space of any finite Boolean matrix is a semilattice under ad-
dition and therefore is a lattice. Conversely, any finite semilattice can be
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represented as a semilattice of sets (order ideals) under intersection. By
duality, it can also be represented as a semilattice of sets under union, and
ultimately as the row space of a Boolean matrix. This situation was studied
in detail in [12].

2 Representation of Inclines by Binary Relations and Other
Structures

The following question was raised by Schein [15]: When can an additively
idempotent semiring R be represented as a subring of the semiring of all
binary relations? Schein [16], Andreka [1], and Nemeti [14] have obtained
deep results in attempting to answer this question. We would like to pose
the related question: When can a finite incline be represented as an incline
of binary relations on a finite set?

Definition 2.1. A family of finite lattices {L,} is (0, 1)-universal if every
finite lattice embeds as a sublattice in some £,, by a map preserving 0 and 1.

Theorem 2.2. _

(1) Every finite, additively idempotent semiring can be embedded in the
additively idempotent semiring of additive endomorphisms of a finite
lattice.

(2) Every finite incline embeds in the incline of the semiring of additive
endomorphisms of a finite lattice which satisfy f(x) < z. This semi-
ring is an incline.

(3) If a finite, additively idempotent semiring is a distributive additive
semilattice, then it can be represented as a subsemiring of a semiring
of Boolean matrices.

(4) Every finite, additively idempotent semiring embeds in the semiring
of additive endomorphisms of some member of any (0,1)-universal
family of lattices.

Proof. (1) If 1 and 0 are not contained in the existing semiring, we add them.
Now the additive semigroup is a lattice. Since it contains 1 and since + is
idempotent, the semiring is faithfully represented by the endomorphisms
z — ax.

(2) Under the representation used in (1), any incline goes to the maps
satisfying f(x) < z. Conversely, if f(z) < z and g(z) < =, then f(g(z)) <
g(z) < z. Furthermore, since g(z) < z and f preserves order, f(g(z)) <
f(z). Thus, the decreasing additive homomorphisms form an incline.

(3) Any finite distributive lattice D is a retract of the semilattice S
of subsets of an n-element set, where n is the number of elements in D
(12, pp- 58-59]). In other words, there is an inclusion of D into § and an
epimorphism of S onto D, whose composition is the identity on D. The
inclusion f from D into § is given by order ideals, i.e.,

f(z)={y € D:y <z and y is not a sum of smaller elements and 0},
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and the map g from S onto D is given by g(s) = inf{y € D:s C f(y)}.

This means that every semilattice endomorphism h of D gives rise to
the semilattice endomorphism of S that sends s to f(h(g(s))). Since all
maps are additive, the correspondence is well defined. Furthermore, for any
two semilattice endomorphisms h; and hy of D (representing elements of
the semiring), f(h1(g(f(h2(g(v)))))) = f(h1(h2(g(v)))) by the retraction
property, so the correspondence is a semiring homomorphism.

(4) Let Q be a finite, additive idempotent semiring. From (1), Q embeds
in the semiring of additive endomorphisms of a finite M. There exists £,
such that M can be embedded via a lattice morphism f into £, so as to
preserve 0 and 1. As in (3), we can define an epimorphism g from £, to
M by g(u) = inf{v € M : f(v) > u}. g is well defined if 1 goes to 1 and
preserves 0 if 0 goes to 0. Since M C L,, as lattices, the infimum may be
taken in either lattice.

If u is in M, it is easy to see that g(f(u)) = u and g is order-preserving.
Since f is a lattice morphism and hence, preserves infima, it is easy to see
that f(g(g)) > ¢. We now claim that g(u+v) = g(u)+g(v). Since g is order-
preserving, g(u+v) > g(u), g(v), whence g(u+v) > g(u)+g(v). On the other
hand, f(g(u) + g(v)) > f(g(u)), f(g(v)) > u,v. So, f(g(u) + g(v)) > u+v,
and hence, g(u) + g(v) > g(u + v). Thus, g(u + v) = g(u) + g(v) and g is
a join-semilattice homomorphism. f is a retract as in (3) and we conclude
the argument with the construction used in (3). a

The process for constructing one-sided inverses of retracts that was used
in the preceding theorem is a special case of a more general result discussed
in {12, Theorem 2.12]. For additional applications of and references on
retracts, see [13].

Any finite lattice is the row space of a Boolean matrix (cf. [6]). Given a
finite lattice £ which is isomorphic to the row space of the Boolean matrix
M, every additive endomorphism h of £ can be represented by left mul-
tiplication of M by a matrix A. In general, A is not unique. If M is a
k x g matrix, then A is a k x k matrix, and the product AM has as its
rows the images by h of the rows of M. For any given M and h, there is
a unique maximal A in the sense that it has the largest possible number of
ones. We denote this maximal matrix by P(k) and we have that P(h);; = 1
if and only if M;, < h(M,,). It follows easily from the definition that
P(h)P(g) < P(hg) and P(h) + P(g) < P(h + g). We do not have equality

for arbitrary lattices.

Ezample 4. Consider the lattice A, with additive generators (join-irredu-
cibles) z; (i = 1,--- ,n) such that z; + z; = 1.

A, is isomorphic to the row space of the matrix M, which is the comple-
ment of the n x n identity matrix Z,,. The automorphisms of A,, correspond
exactly to the permutations of the ;. For each automorphism 7, P(r) is
Just the corresponding permutation matrix.

Representation of Inclines 465

Given any two distinct automorphisms 7; and 79, their sum will be the
endomorphism that sends every nonzero element of A,, to 1. However, the
sum P(m,) + P(r) will vary. Thus, P is not additive.

Proposition 2.3. For n > 3, the semiring of lattice endomorphisms of
A, will not embed in the semiring B, for any m.

Proof. Assume to the contrary that there is such an embedding of End(A,,)
in B,, for some m and n. The permutations embed in a single H-class
containing the identity matrix Z,, and the permutation group. The permu-
tations act faithfully as permutations of a row basis of Z,,, preserving its
order structure.

Consider the case where n = 3. A faithful permutation representation
will have some orbit equivalent either to the standard representation or to
the regular representation (consider possible isotropy groups for a faithful
representation). Then the row basis elements cannot have any element
greater than another.

This gives a block in the matrix Z,, where the permutations are repre-
sented either by the standard representation or by the regular representa-
tion. Let 11, 73,73 be the identity and two 2-cycles, respectively. On the
lattice A, 71 + 72 = T2 + 73. But, in this block of Z,,, we cannot have
the equality of (7y + 72)Z,,, and (72 + 73)Z,, which are equal to 7 + 72 and
T9 + T3, respectively. 0O

Definition 2.4. Let Q be a quasiorder on an n-element set represented in
B, by an idempotent, reflexive Boolean matrix E. The incline X(Q) is the
subsemiring of matrices M such that M = EMFE and M < E.

It is easy to see that K(Q) is closed under multiplication and addition,
and it is therefore a semiring. The incline property follows from MN <
ME =M and NM < EM = M. As defined above, it might appear that
K(Q) depends on the matrix used to represent Q. The following theorem
shows that this is not the case and the definition is independent of the
representation used.

Theorem 2.5. Every finite incline which is a subsemiring of B, is a
subsemiring of K(Q) for some quasiorder Q. Isomorphic quasiorders give
isomorphic semirings, and K(Q) is also unchanged if each equivalence class
of @Q is replaced by a single point.

Proof. Let € be the sum of all elements of the incline. Then Q0 < Q and
QG, G < G for any G in the incline by the incline property. Moreover,
G < Q. Now let E = I + 2, where [ is the identity matrix. This proves the
first statement.

The indifference relation D of E, which is the intersection of E and its
transpose, lies between I and E. Hence, DMD = M for M € K(Q). Thus,
if we block all matrices according to equivalence classes of D, then every
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block consists entirely of zeroes or ones. Replacing all such blocks by 0 or 1
is a semiring isomorphism. The structure is also unchanged if we conjugate
by any permutation matrix.

Another way of viewing K(Q) is in terms of the relations represented by
the matrices. These are subrelations R of Q having the property that, if
(a,b) € R, then (z,y) € R for all z and y such that z < a and b < y, where
z and y are in the domain of Q. O

Ezample 5. If we take the relation i < j of integers, the maximal incline
corresponding to this is the incline of all subtriangular matrices M such
that, if me, =1, z < a, and b < y, then Mgy = 1.

Theorem 2.6.
(1) If Py is a subposet of P, then K(P,) is a subsemiring of K(P).
(2) Suppose P is a poset with n elements. Let Z, be the poset of all
subsets of an n-element set. Then K(P) is isomorphic to a subincline

of K(Z,).

Proof. As noted in Theorem 2.5, K(P) consists of all matrices corresponding
to binary relations R contained in the order relation of P such that, if
(a,b) € P, (b,c) € R, and (c,d) € P, then (a,d) € R.

To simplify the exposition, we identify P, with a subset of P, represent
K(P) using a matrix E, and represent X(P,) using a matrix Eg such that
Ey < E and FEYE = Ey. Now, given M such that EsMEy = M, it follows
that EME = EEMEGE = EgMEy = M. It is now easy to see that the
first part of the theorem holds.

To see that the second part holds, note that every poset is a subposet of
its power set. Simply select the set of principal order ideals and note that
P is isomorphic to this set ordered by set inclusion. O

Our general problem can now be restated: Does the incline of decreasing
endomorphisms of an arbitrary semilattice for some n embed in the incline
K(Zy) where Z, is the poset of all subsets of an n-element set? One could
approach this by an induction, assuming that the incline has a unique min-
imal nonzero element y and that we have a representation for the quotient
of the incline by the ideal [0, y].

Here is another interesting question: Is there a simple (0,1)-universal
family of lattices that is easy to describe, but which is not the family of all
finite lattices? Alternatively, this can be relaxed a little for our purposes
to the following question: Is there a family of finite semilattices such that
every finite semilattice is a retract of some member of this family by a map
preserving sums and 0?7

Yet another question whose answer is unknown to us is: What are all
the finite, simple additively idempotent semirings? Matrices over finite fields
are one example, and another is the semiring of Boolean matrices. To see
that the last entity qualifies as an example, note that any 2-sided.ideal must
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contain a nonzero rank 1 matrix. Therefore, it contains every rank 1 matrix,
whence it contains every matrix.

Proposition 2.7.

(1) The only finite simple inclines are those of 1 and 2 elements. Every
other incline has an ideal which is also an order ideal.

(2) Every incline with at least 3 elements has a 2-sided ideal which is also
an order ideal such that the quotient semiring has 2 elements.

Proof. If L is an incline which has at least 3 elements, there exists a minimal
nonzero element = which is not 1. Then [0, z] is a 2-sided ideal and an order
ideal. The last statement follows by induction and the fact that the inverse
image of an order ideal is also an order ideal. O

The preceding proposition could also be useful in studying representa-
tions.

3 Other Algebraic Properties of Inclines

Definition 3.1. The n-dimensional vectors over an incline K are the ele-
ments of the n-fold Cartesian product K™. The n-square matrices over an
incline are all n X n arrays (a;;) of elements from the incline added and
multiplied as usual with the componentwise operations being performed in
the incline.

A subspace of the n-dimensional vectors is a subset that is closed under
sum and scalar product. A basis of a subspace is a linearly independent
set of vectors whose linear combinations generate the subspace. A standard
basis is a basis {z1,--- ,z,} such that z; = c;;z; whenever z; = > cijzj.

The following theorem is due to Cao [3].

Theorem 3.2. Every finite incline in which idempotents are linearly or-
dered has a unique standard basis.

Ezample 6. The 4-element Boolean algebra does not have a unique standard
basis.

Green’s relations L£,R,H are, respectively, equivalent to the equality of
row spaces, equality of column spaces, and equality of both row and column
spaces. Two matrices A and B are D-equivalent if and only if there is
an isomorphism between their row spaces, or equivalently, if there is an
isomorphism between their column spaces.

Idempotent Boolean matrices can be reduced to a very special triangular
form in which nonzero rows and columns are idempotent (cf. [6, 11]).

Idempotent matrices E over a finite incline can be reduced to a standard
form F such that F' < E. They have the same row space, the nonzero rows
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of F' are a standard basis, and f;; F;, = F;, for all ¢ where ¢ denotes the ith
row of F. In particular, diagonal elements are then idempotent.
If the idempotents in this incline are linearly ordered, it is possible to
havelF triangular in the weaker sense that the binary relation {(¢,j) :
n—

my; " >m;j;} is triangular.

Ezample 7. The following matrix is idempotent when con51dered over the
incline K3 discussed at the beglnmng of this paper.

1 0.49 0.7
07 1 0.49
049 0.7 1

Proposition 3.3. For any matrizc M over a finitely generated incline, the
sum I+ M + M? + --- converges and yields an idempotent.

Proof. The convergence follows from the ascending chain condition in
finitely generated inclines. In this case, the sum equals its own square
because of additive idempotence. O

A topological incline is an incline which is a topological space and such
that the operations are continuous. X;, K, and K3 are topological and can
be characterized by their special properties on [0,1]. X, is characterized by
all elements being idempotent. K is characterized by 0 and 1 being the
only idempotents and every other element having a finite power which is
1. Note that in K3, 1 < 0 in the induced ordering. K3 is characterized by
0 and 1 being the only idempotents and having no other elements with a
finite order.

Any topological incline on [0, 1] can be constructed by inserting copies of
K2 and K3 into subintervals of ;. One may also study infinite-dimensional
matrices over a topological incline. For instance, it can be shown that over
K3 any symmetric infinite-dimensional matrix with a largest entry has a
nonzero eigenvalue.

The 2-sided ideals in any semiring with O (or in any semigroup) form an
incline (noncommutative in general) under the operations T+ and ZJ. In
[10], we determined these semirings for algebraic number rings, polynomial
rings in one variable, and regular semigroups. For nilpotent semigroups, the
incline structure of the incline of ideals determines the semigroup structure
(see [10]).

There is another incline very closely related to the structure of semirings,
the incline of topologizing filters (see [5]).

Definition 3.4. A topologizing filter on a semiring R is a collection A of
left ideals such that

(1) fTe Aand I C J, then J € A;

(2) fZ,TJ €A, then INJ € A;

(3)ifTe A, reR,then(T:r)€ A, where (T:7r)={z€R:2r eI}

Representation of Inclines 469

Ezample 8. Every topologizing filter for Z consists of the ideals containing
some given ideal (m).

Definition 3.5. The product F;.F; of two topologizing filters is the set of
left ideals
{Z:3He A, HDZI,(T:h)e FVheH}

Proposition 3.6. [10] For any semiring with 0, the set of topologizing
filters forms an incline under the operations of intersection and product.

The previous proposition generalizes the earlier result for topologizing
filters on rings.

For semirings, congruences can be as important as ideals. The natural
generalization of the previous definition seems to us to be the following
definition.

Definition 3.7. A topologizing filter of left congruences on a semiring R
is a set of left congruences L, (taken as binary relations on R) such that

(1) ifC € L, and C C D, then D € L;

(2) L. contains the intersection of any two of its elements;

(3) if C € L, and =,y € R, then {C : (z,y)} € L., where {C : (z,y)}
is the congruence generated by all unordered pairs r, s € R such that
(rz + sy,ry + sz) € C.

Definition 3.8. The product FiF; of two topologizing filters of left con-
gruences is the set of all congruences ¥ such that, for some ¥, € 7, ¥,
contains ¥ and, for all (z,y) € ¥4, {¥ : (z,y)} C Fa.

This raises the following basic question: Are there any conditions under
which the topologizing filters of left congruences form an incline for semir-
ings that are not rings?

The following concepts are important in symbolic dynamics.

Definition 3.9. Matrices A and B are shift equivalent of lag n over a
semiring R, if there exist matrices R and S over R and a nonnegative
integer n such that RA = BR, AS = SB, RS = B™, and SR = A™. The
strong shift equivalence is the transitive closure of lag 1 shift equivalence.

Another problem which would be of interest is the strong shift equiva-
lence of matrices over inclines. The Boolean case was settled in [7, 8]. Kim
and Roush [9] describe the shift equivalence for matrices over inclines.

A final question that we wish to raise is: Are two matrices over a fi-
nite incline strong shift equivalent if they have the same trace and are shift
equivalent?
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4 Conclusion

Various families of finite inclines and of finite inclines representable by
Boolean matrices have been discussed. Inclines play an important role in
the algebraic structure of general rings and semirings.
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