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Abstract

We are interested in the question of how to learn
rules, when those rules make probabilistic statements
about the future. In this paper we discuss issues that
arise when attempting to determine what a good pre-
diction function is, when those prediction functions
make probabilistic assumptions.

Learning has at least two purposes, 1) to enable the
learner to make predictions in the future, and 2)
to satisfy intellectual curiosity as to the underlying
cause of a process. We will give two results related
to these distinct goals. In both cases, the inputs are
a countable collection of functions which make prob-
abilistic statements about a sequence of events. One
of our results shows how to find one of the functions,
which generated the sequence, the other result allows
us to do as well in terms of predicting events as the
best of the collection. In both cases the results are
obtained by evaluating a function based on a trade-off
between its simplicity and the accuracy of its predic-
tions.

1 Introduction

We are interested in the question of how to learn rules,
when those rules make probabilistic statements about the
future. An example of such a rule, might be that with each
toss of a die, there is a one sixth chance of a one showing
up. The results in this paper help give a philosophical and
mathematical basis for the scientific method. The scientific
method, in turn has resulted, for example in our current

belief in Quantum Physics *.

3Work done at IBM while on leave from Dipartimento di Infor-
matica ed Applicazioni, Universita' di Salerno, 84100 Salerno, Italy.

4+ Quantum Physics makes probabilistic statements about the fu-
ture, and suggests that randomness is inherent in nature. Other
sciences, which are about the macro world make statements which
are precise about an idealized world. For example, two objects of
different weight will fall at the same speed. This statement will be
subtlety off when actually measured. One object might be buffeted
by the wind, or the two objects are not released at the same time,
or other measurements are not precise. Thus, the prediction that
would be made based on this exact law is that the two will fall ap-
proximately at the same time, and the measured difference in time
will be gaussianly distributed around zero.
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Before giving our results we review classical philosoph-
ical thoughts on the principal of induction. The princi-
pal of induction says that things in the future will be-
have as they have in the past. All human scientific knowl-
edge comes either from laws derived by generalizing events
in the past, induction, or by following the consequences
of those laws, deduction. Deductive reasoning is math-
ematical reasoning based on an accepted set of axioms.
These axioms are usually arrived at by inductive reason-
ing. Hume [Hu] asked whether there was any deductive
justification for the principal of induction.

A physicist might say that he believes a given law will
work in the future because it has always worked in the past.
When questioned as to why this is a good justification, he
might say that when he has used induction to derive laws
in the past, they have continued to work (again in the
past) thus he expects that these laws will again continue 3
to work (but this time the assertion is about the future).
This amounts to justifying the principal of induction by E
using the principal of induction. :

A justification for the principle of induction first re- -

quires a more complete description of how we generalize §

from past events to a law. William of Ockham suggested ;
a rule which has become known as Occam’s razor: “plu- |
ralites non est ponenda sine necessitate” or multiplicity §
should not be posited without necessity [Mo]. This has {
been paraphrased as the simplest explanation which fits 4
the available facts is the correct one.

Gold [Go] suggested a concrete model for induction -

that was later improved by Blum and Blum [BIBI. We §
will refer to the latter one. They try to find a rule which |
explains or generates a sequence®. A rule which explains }
the sequences 1, 4, 9, 16, 25 ... is that the i*® element §
of the sequence is i2. Note that this explanation can also -
be used to generate the sequence. They start out with a 3
possibly countably infinite list of all explanations for the §
sequence. All written English forms a countable list; relat- 3
ing their model to Ockham’s the earlier explanations in the 4

list are the simpler. They examine each element in the se- -8

5Infering the rule which generates a sequence is no easier than 1§
infering a rule that describes experimental results based on the data
about the experiment. If the experiments are written out, before- :
hand, then predicting the sequence models predicting the results. ;
Our dependent prediction functions model what happens if the se- ]
quence of experiments change in view of the previous results.
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" quence and after this examination, announce their current
- guess as to the best explanation or generating function.
* One can “infer” the rule in their sense if there is a method
. converging on a current explanation. Consider the pro-
" cedure of always announcing the earliest generator in the
- Jist consistent with the element of the sequence seen thus
" far. This follows Ockham’s principle of using the simplest
rule. If there is a generator of the sequence there must
be an earliest generator. All explanations proceeding this
-one are wrong and hence there is some element of the se-
" quence they do not explain. Thus after some number of
elements have been seen, enough to eliminate all incorrect
explanations proceeding the first correct explanations, this
Jearning procedure will converge on the correct explana-
tion. Blum and Blum further consider how to modify this
procedure when the list contains functions which are not
guaranteed to yield an answer in all cases.
~ If an explanation is in a list of total functions, the
above procedure answer’s Hume’s question in the sense
that this elaborated principle of induction is guaranteed
to eventually get the right explanation. This procedure
follows our understanding of the scientific method and the
meaning of scientific theory. A scientific theory is always
viewed as a theory and not a fact. It is always open to refu-
tation, and scientists always keep an open mind. However,
until disproof a theory is assumed to be correct.
"« The situation when judging probabilistic rules is more
‘complex. This follows because a rule which says that “the
‘next element in the sequence has a certain probability of
being = and another probability of being y” may never be
completely wrong, and hence cannot be eliminated. Oc-
cam’s Razor will not distinguish between a simple expla-
nation and a more complex one which fits the data better.
Rissanen proposed a trade off between the accuracy of an
explanation in predicting events and the index of the ex-
planation. We propose a similar function of the index and
the accuracy as a more precise version of Occam’s razor
and show that by choosing the explanation that minimizes
the value of this function we can learn probabilistic expla-
niations in the same way that the above procedure learned
non-probabilistic explanations.
“*+'We assign each function an initial weight based on its
index i. These weights sum to one. 6/(wi)? might be such
~an initial weight. After a sequence of elements has been
seen, we say the weight of a function is its initial weight
times the probability it assigns to that sequence occurring.
“We call this the validity of a function. The function with
the largest weight we will show is in some sense the “best”
one. .If these weights are normalized to sum 1 they may
be used to obtain a prediction which is in some sense a
“consensus” of all the other functions. This consensus is
robtained by summing each function’s prediction times its
‘normalized weight. We show that this consensus can be
- computed and is almost as good as the best function.
... Learning has at least two purposes, 1) to enable the
: !t??.mer to make predictions in the future, and 2) to satisfy
ntellectual curiosity as to the underlying cause of a pro-
cess.“This latter purpose may be augmented by the ability
. .once the “underlying cause” is known to make predictions
o about wholly unrelated things. In this paper we discuss
-15Sues' that arise when attempting to determine what a
% v, 8ood ‘prediction function is, when those prediction func-

tions make probabilistic assumptions. We will give two
results related to these distinct goals. In both cases, the
inputs are a countable collection of functions which make
probabilistic statements about a sequence of events. One of
our goals is to find one of the functions, which generated
the sequence which is obtained by choosing the function
with the largest validity. The other result allows us to do
as well in terms of predicting events as the best of the col-
lection which is done by the “consensus” function. In both
cases we are trying to “learn” a model of the sequence of
events based on the given collection of functions.

It is useful to have an example in mind as we describe
the results in this paper. A simple example is detecting
the probability of a one showing on a die. We also use
Markov chains (also known as stochastic automata) as a
motivating example, since there are extant results that we
can compare our results to. Markov chains are determinis-
tic finite automata, with a set of states, a start state, and
transitions, but also have probabilities on the transitions.
These probabilities give a prediction about the next char-
acter in a sequence. We will assume, so that it is possible
to give the machines an index, that the transition proba-
bilities are rational.

Ziv and Lempel [ZiLel], [ZiLe2] have given an algo-
rithm which asymptotically compresses an infinite length
sequence, as well as any Markov chain does. “As well”
in this context means that the ratio of their compression
to the best Markov® chain approaches one. The predic-
tions of our first algorithm can be used to compress the
sequence and will be only a fixed number of bits off the
optimal. Our algorithm treats the Markov chains as black
boxes, and works equally well for other models, for exam-
ple stochastic DPDA’s.

Markov chains may be used to generate a sequence.
Given a sequence it may be valuable to determine the gen-
erating Markov process. Neither our first algorithm nor
Ziv and Lempel’s algorithm is able to determine this. All
they do is to make predictions which are as good as the
generating process would. Rudich in [Ru] attempts to de-
termine the generating process from the input sequence
provided that the process is drawn from certain limited
kinds of Markov chains. However, he runs into trouble
when two chains which have the same underlying transi-
tions, but different start states can be different under some
sequences but have the same probability of generating the
particular sequence that has been generated (see Figure 1).
We solve this problem, by discussing the concept that two
processes are distinguishable with respect to the sequence.

A result similar to the one claimed by Rudich is fairly
easy to derive given our second algorithm. Our second al-
gorithm examines each element in the sequence, and after
examining it chooses one prediction function as its cur-
rent guess as to the generating function. Provided that
all prediction functions are distinguishable with respect to
the sequence and that there are only a countably infinite
number of these functions, our algorithm is guaranteed to
converge on the correct function. To obtain a result sim-
ilar to Rudich’s attempt one basically needs to show that
it is possible to determine whether two functions are dis-

€Ziv and Lempel actually discuss compression by finite state
transducers, but the two are much the same.




tinguishable with respect to the sequence. This is fairly
straight forward.

In the next section we give more detail on the theoret-
ical model. Section 3 compares the results we obtain with
previous results, and Section 4 describes possible applica-
tions. Section 5 gives a formal treatment.

2  Qur model

A prediction function is a function from a pair, X and Y to
a conditional probability of ¥ given X, in much the same
way that Bayesian analysis is done. Given a prediction7
function f, and a string s = s(O)s(l)...s(n)... the probabil-
ity of its prefix of length n, s, = s(0)s(1)...s(n — 1), being
generated by f is H?;ol f(s:,5()). Such a function can
model a Markov process by taking the X's to be strings.
f(si,s(i)) is computed by running the Markov process on
the first i characters, ending in some state, and asking
what the probability of taking the transition with s(i) is.

By abuse of notation, when the string is clear we will
say that f(i) where i is an integer is the same as f(si, 5(?))-

A prediction function can be said to generate a string
s = 5(0)s(1)...s(n)... by asking for the probabilities of the
various characters in the alphabet when preceded by the
empty string, then flipping a fair coin to determine the
first character. Then a coin is flipped to determine the
second character given the probabilities for the characters
following the first character. This process is repeated.

If one is attempting to find a good model of En-
glish text, using a Markov process, you are not attempt-
ing to find the Markov process which generated the text,
since the text was generated by a human, and it is proba-
bly not a good idea to insist that humans are the same
as Markov processes. Rather you are trying to find a
Markov process which does-as well as possible in pre-
dicting the next character. So, learning for the first pur-
pose we stated, learning for the purpose of making predic-
tions, seems more appropriate here than the second pur-
pose mentioned, learning to find the underlying causes.
We will measure the goodness of a predictor by its en-
tropy. The entropy of f on the sequence Sy, is defined as
s (onas) = = S0 o In(f(3)) = ~In T[izg f(3)- One of
our goals is to minimize entropy.

Let F be a countable collection of prediction functions
denoted fi, fz2,.... We assume that there is some way of ob-
taining the results of the fi’s (either they are computable
or we have an oracle to give their answers). Our first re-
sult, Theorem 3, says that we can create a function G’
whose results are computable in bounded time (and possi-
bly bounded oracular queries). G' is a prediction function
and when computing a prediction for the j*# term in the
sequence, G' may examine the answers that any of the
fi’s give for either the j** term, or any of the preceding
terms. The result says that the entropy of G’ never exceeds
3 * log(i) plus the entropy of f;. This compares favorably
with Ziv-Lempel, who show that if the f;’s are created from
Markov processes® that their function, k, has the property
that h(j)/ fi(j) approaches one or less as j goes to infinity.

7In Section 5 we will make a distinction between dependent and
oblivious prediction function. We have here the definition of the more
general dependent prediction function.

Attempting to find the generating function for a se-
quence out of a collection of functions is our model of the
second purpose of learning, learning to find the underlying
cause. However, certain definitional problems occur. Ob--
viously, if two identical functions are in the class and one is
the generating function, it will not be possible to determine
which of the two functions is the generating one. In fact, if
the two functions differ by only a little, it will still be im-
possible. Consider a sequence of coin flips. We might have
one function, the generating function, which says there is
a 50-50 chance of a head or a tail. We might have another
function which says there is a 75 percent chance of a head
on the first flip and a 50-50 chance on the remaining. It
will be impossible to say which is the generating function,
without additional knowledge, especially if the first flip is
a head.

A further complexity arises because two functions may
differ on some sequences and not on others. We might have
a function which said that on the first flip heads appeared
half the time, but if a head appeared first it would then
occur 75 percent of the time. If a tail appeared first, then -
from then on heads and tails would be equally likely. Hence
this function can only be distinguished from the 50-50 func-
tion when the sequence starts with a head. To solve this
problem, we introduce the notion of whether two functions
are distinguishable on a given sequence.

Two functions, f and g, are said to be distinguishable

on a sequence if Z?:o >, (FU y)—9(j, y))? goes to infinity , .

as n goes to infinity and where y ranges over the alphabet.-
Note that this definition takes into account the sequence
because that is implicit in the definition of f and g.

We will show that if f; generates a sequence, and if
with regard to that sequence f; is distinguishable from fi
then with any given probability and any value there is a
point, n, at which Entg; n(Snt1) — Enty, n(sn41) exceeds
that value. Our second result follows from this. S

Our second result, Theorem 11 says that with prob-
ability one, we can find the generating function from a
countable collection of distinguishable functions.

e
¥
3

We go on to show how to apply this result to find *:f

a Markov process which generates a given sequence. The
steps of this proof show how the theorem should be applied.

The fundamental steps are 1) to show that given any prefix
of the sequence we can recursively enumerate the machines”.

which are distinguishable with probability one. The defini-
tion of distinguishable relates to the entire sequence, which

is infinite in length and hence can’t be examined. How-

ever, if two machines have a pair of states with differen

transition probabilities and we can show that with proba-*

bility one the machines will get into a pair of states with
different transition probabilities infinitely often, then thi
suffices for our purposes. 2) to show that with probability”

one the machines will either become equivalent or get into
states where they will be distinguishable with probability”

one. 3) to apply the second result.

The field of inductive inference originated in the seminals
work of Blum and Blum [BIBI]. In this work they were in Fg
terested in whether you could tell which machine generated £

£ 3
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a given sequence, and what the computational character-

jstics of the machine needed to be in order to be able to
infer the machine which generated the sequence. Their
notion was that after seeing each element in the sequence
they would say which machine they thought generated the
sequence. At some point they will converge on the cor-
rect machine. The simplest form of this learning process
is very easy to understand, they simply report the ma-
chine with the smallest index that is consistent with the
data. Eventually, all the machines with lower index than
the generating machine will eliminate themselves.

In addition to conceiving this model, they showed
that one could find the generating machine for larger com-
putability classes than when predicting the next value in
the sequence. This result leads to a different intuition than
in our model, where one needs fewer caveats about predict-
ing the next element with machines which probabilistically
generate the sequence, than one needs when finding the
generating machine.

Valiant [Va] has recently suggested a model which as-
sumes that you are trying to learn alanguage, and elements
are either in the language or not. One is randomly given
an element and told that it is in the language. Sometimes
you are also told that certain elements are not. This model
involves probabilities, but not in the way that ours does.
It also discusses the speed at which one converges to a
solution, and we have not addressed this important ques-
tion in the context of finding underlying causes. It may be
possible to address it in our model. There have been pa-
pers discussing what happens when the oracle, telling you
whether an element is in the language or not, occasionally
makes an error. This comes closer to our model.

Much of the motivation and intuition for our work
comes from the area of data compression. We have al-
ready discussed Ziv and Lempel’s result. In one sense our
results are better and more general. However, Ziv and
Lempel’s results are computable in realistic time, whereas
ours are not. It would be interesting to see if it is possible
tospecialize our results to finite automata and improve the
computational speed.

Rissanen is also a major contributor to the data com-
pression literature. We first found the suggestion that the
index can be combined with the entropy of the sequence to
choose a good prediction function, although it had earlier
been described by Solomonoff {So]. Rissanen’s intuition,
which we agree with, is that one wants to find the mini-
mum information necessary to express the data that one
is given. As with Chaitin-Kolmogorov complexity [Ch],
[Ko], we find the smallest machine that can produce the
output, where part of the machine contains the data about
the output. To encode the machine from an infinite col-
lection requires more than log bits, since it is necessary to
say where the encoding of the machine ends, and the data
begins. Thus, one needs the length of the encoding, and
the length of the length of the encoding, etc... Rissanen
Suggests using log + log log + log log log + .... This func-
tion would suffice for the weighting function of Theorem 3
and of Theorem 9.

The intuition of combining the index with the accu-
tacy of the prediction was one of the main inspirations for
this work .

Rissanen also started on the path towards proving re-
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sults about the power of what he calls statistical inference.
In particular, he gives a result very similar to Theorem 7,
which works with a fixed number of functions. He also
extends it so that the functions can have real numbers
in them. One of his examples is finding the “right” linear
equation to determine an outcome from some measured in-
puts, and reals are important here. However, since he does
not consider countable collections of functions, he gives no
theorems which require using the index, he only gives in-
tuition and empirical results. With any fixed collection
Theorem 7 shows that the entropy alone suffices to find
the correct function. We require the index to be consid-
ered in order to prove Theorem 8.

4 Possible applications

The difficulty in applying this work stems from the ex-
treme computational overhead in dovetailing the various
machines. However, there are examples where this over-
head can be cut down. There are other examples where the
intuition gained from this work and that of Rissanen can
be applied, even if the results cannot be directly applied.

One example where the results might be applied comes
from vision. Here, one is given a collection of pixel val-
ues. The sensor’s which detect the brightness of each color
typically have some noise associated with them, and their
values can be assumed to be gaussianly distributed around
the “correct” value. We would like to determine the un-
derlying shapes that cause the pixel values. A shape might
be flat or curved. If it is flat it is simpler, and hence a de-
scription of the scene can be shorter. We can think of each
scene as giving probabilities to each pixel value. Hence, we
are attempting to find the “correct” generator of probabil-
ities for the pixel values. We can use numerical methods
to determine the best curved surface to match the pixel
values. One can almost always devise a curve which will
match the data better than a flat surface. But there may
not be enough data to justify the more complex model,
and the results in this paper seem to be similar to some
recent advances in vision [FaHe], [FaHePa).

Another example comes from Rissanen’s papers. Sup-
pose one wants to come up with a set of linear functions
which explain some data. Again, numerical methods may
be used to determine the best functions based on one vari-
able, two variables, etc.. One may use the results in this
paper to choose amongst them.

An example which does not quite fit the model comes
from the work of Ziv and Lempel. They have an adap-
tive compression scheme which builds an automata that
is based on their data. They show that eventually it will
approach the best automata. But, this automata has a
strange form. There is one state which is the root of the
automata. All other states can only be entered from ex-
actly one other state. So the transition diagram resembles
a tree, with multiple entering edges only to the root. There
is no mechanism for combining two sub-trees. So, the au-
tomata is often exponentially bigger than the “best” one.
Theoretically this is not a problem (there are other prob-
lems with this approach, but we won’t focus on them here).
In practice the adaptation can be slowed significantly. Our
results suggest a method for determining when two sub-
trees should be combined, and when they should be split




again.
5 Formal treatment.
Let A denote the natural numbers, i.e., the set {0,1,.. .1

R the real numbers, Y a fized countable set, S the set of all
sequences from Ainto ', je, S ={s:N =V}

Definition 1 A function f : N xY —R is called an
oblivious prediction function if VieN ,Ey Y fGy) =1
The set of all oblhvious prediction functions will be denoted
by P..

An example of an oblivious prediction function is the
function which says that all flips of a coin have an even
chance of being a head or a tail. We call it oblivious since
it does not care about the previous flips.

Definition 2 A function f : Y*xY — R s called a
<liependent prediction function if Vs;e)', Ey Y f(siyy) =

Dependent prediction functions are used to model
functions where, as in sequences generated by Markov pro-
cess, the probability of the ith element being a particular
element depends on previous elements! A dependent pre-
diction function f can be used to generate a sequence. The
first element of the sequence is chosen from y € Y by flip-
ping a fair coin based on the probabilities f(so,y). Note
that sq is defined as the empty sequence. Once the first el-
ement is chosen, s is defined, and second element is based
on f(s1,y). The ith element is based on f(si,y)-

"” One useful quantity is the entropy defined as follows.
We use the natural logarithm In for ease of computation.
Since log, is a constant multiple of In all the results in
this_paper can be readily expressed in terms of log,.

Definition 3 Given an oblivious prediction funciion, f
and a sequence seS the {-Entropy of s, denoted by Entg(s),
is defined as — 5.2, In f(i,5(3)). The symbol Ent; n(s) is
used to represent the quantity — Y ;—oln f(3, s(3)).

5.1 Learning for the purpose of making
predictions.

In order to produce a dependent prediction function which
is guaranteed not to be much worse than the best in a
countable collection of dependent prediction functions, we
will give each function in the collection a weight, and aver-
age its predictions times that weight to achieve the predic-
tion we will actually use. Since each function will always
have positive weight, we will never completely discount any
y unless no functions “thinks” it is possible.

We give each function, f; an initial weight w; -y with
the property that Z;’il wj,—1 = 1. For example w; 1 =
6/(wi)?.

The function val of a dependent prediction function
fi in a countable collection is defined as

val(i,n,s) = wi,_1 H fi(sk, s(k)).

We will later show that val is related to the validity func-
tion of Section 5.2. The weight w; , of the #** function

T e s i A o)
R bt R i

after the n*® term is defined by
wi,_le'E"‘I-""(’) val(i,n,s)
Win

n = T, wj,_le'Em’"’"(') D val(j,n,s)’

If we had infinite compute power we would use the follow-
ing as the best guess as to the actual probability

G(sn,8(n)) = ) _ Wj,n-1j(sn,5(n))

j=1
Note that Y50, win =1 thus 3 ¢y G(sn,y) = 1. Hence
G is a dependent prediction function.

Theorem 1 Let {f;} be a countable collection of depen-
dent prediction functions. The entropy of G on the first
n 4+ 1 terms of the sequence 5, — Y io In(G(si,5())), s
less than or equal to —In(wj 1)+ Enty; o(s), for all j.

Proof. Entropy of G on the first n terms of sequence s =

—iln(G(si,s(i))) = —znjln i‘lﬂj,i_l,fj(si,s(i))

=0

(by definition of G)

n oo i-1
- STIn wj, -1 [Tx=o £ (58, 5(K))
Z‘; ; T2, w1 [imo fi(sk, (k)

(by definitions of w)
=—In (ﬁ 3252 wj,—1 [Th=o i (5%, s(k)))
20 g1 Wi T i sk, s(k))
(reorganizing terms)

- (z:;?‘;, wj, -1 [Tk=o f,-(sk,s(k))>

Z;'x;1 Wj,—1

(canceling numerator of one term with the denominator of
the next) :

fi(si,5(9))

= —1In ij,—l H fi(sx, s(k))
ji=1 k=0

(Since the denominator equals 1, by definition) ‘
i

n .
i
<-ln (w,-,_l II fi(sk»S(k))) = —In(wj,—1)+Entg;n(s):
k=0 o

0 ~‘:":
With the same technique we can prove the following: ,g
Theorem 2 Let {f;} be a countable collection of depen-
dent prediction functions. The eniropy of G on the ﬁrs.i'
n + 1 terms of the sequence s satisfies

-3 ) £ 3w Bt
i=0 i=1
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With finite computation we can approximate G, by
only considering the most highly weighted functions. If we
consider a larger percentage of the weight as the number of
terms increases, then we will still converge on the “right”
guess. . .
An example of the kind of theorem we can prove is
the following:

Theorem 3 There is a computable dependent prediction
function, G', such that for any predictor, S, from a count-
ably infinile collection of dependent prediction functions,
provided that Y is finite, G' will have entropy no greater
than Ent;, + O(31nj).

‘Proof. Create a new countable collection of dependent

prediction functions by adding a new function to the old
collection and renumber the old functions so that the new
function has index 1. The new function assigns equal prob-
ability to all y’s. Let Ent;, , be the entropy of this func-
tion after n + 1 steps (this entropy is computable before
seeing the y value). Let w,, = 0ifi > eErtnin and
(/%) I[Ti=o fi(k,s(k)) otherwise. w is computed by nor-
malizing w’. The entropy of the method will be Enty,
until eZ71.» exceeds i. Hence, the method’s entropy will
exceed that of Theorem 1 by Ini. Theorem 1’ function
exceeds functions by not more than twice the In of their
index. O

Thus G of Theorem 1 becomes the “consensus” func-
tion we promised in the introduction. Theorem 3 shows
how to compute G’, an approximation to G, which retains
G’s desirable properties.

5.2 Learning for the purpose of finding
underlying causes.

“In this section we show how to find the function which gen-

erated a sequence from a countable collection of possible
generators. If two functions in the list are identical we can
not tell which one was the correct generator. Hence, we
require that the list only contains distinct functions. More-
over, if two functions are identical except for the probabili-
ties they assign to the first event, we still will not be able to
be sure which one generated the sequence. Hence we will
introduce the L, norm and define the notions of weakly
and strongly distinguishable functions.

Theorem 7 gives a sufficient condition to ultimately
converge on the generator of a sequence from two distin-
guishable oblivious prediction functions.

So, we can use Theorem 7 to determine which of two
coins (with different probabilities of head and tail) was
used to generate a sequence.

Theorem 8 generalizes Theorem 7 to allow a countable
Bumber of generators to be chosen from. Thus, Theorem 8§
will allow us, for example, to converge on a rational num-
ber which is the probability that a coin produces a head

~_(assuming that we know that the probability is rational,

and thus that there are only a countable number of coins

b0 choose from).

i Theorem 11 shows when the ideas of Theorem 8 can be
8pplied in the context of dependent prediction functions.

» for example, they allow us to converge on a Markov
Process (assuming rational probabilities) which generated

8sequence.

Definition 4 Let f be an oblivious prediction function.
Then the Ly norm of f, denoted by ||fllz is defined as

03 £,y
icN ye)
The symbol || f||2,n is used to denote the quantity

2> fGy)

i=0 yCy

As usual, @ norm can be used to define distances be-
tween pairs of elements in P. Thus the L, distance be-
lween a pair of elements, f, g in P is defined as f = gllz-

We use the norm to enable us to tell whether two
prediction functions are distinguishable. We can determine
which of two distinguishable functions is the one which
generated a sequence. The norm provides us with a way of
comparing two functions and, as we will show, determining
that if one generated a sequence then it will eventually have
much smaller entropy on that sequence.

The fact that || [|2 is a norm follows from the fact that
1t can be defined in terms of an inner product on P . For
the relevant theorems and definitions see Sections 3.1 and
3.2 of the book by Ash [As].

Each oblivious prediction function gives rise to a prob-
ability measure on the set of sequences Sin a fairly natural
way. To explain this idea we need the following definition.

Definition 5 For each oblivious prediction function f and
natural number i there is a natural probability measure on
Y denoted by Probs; and defined as

VY'C Y, Probyi(Y') = Y f(i,y).

yey’

It is clear that each Proby; is a probability measure
on Y. From these measures there is a natural way to create
a probability measure Prob; on the set of sequences S , by
looking at each position of the sequences and considering
the corresponding probabilities. This is described in the
following theorem, which is essentially Corollary 2.7.3 of
Ash’s book [As].

Theorem 4 Given an oblivious prediction function, f,
there exists a unique probability measure, Probs on S hav-
ing the following property: for all finite subsets M of N and
subsets {Y; C Y |ieM},

Probs({seS | VieM, s(i)eY;}) = H Probs ;(Y7).
teM

Thus, we can determine the probability of one se-
quence of events or the probability of a set of sequences
of events.

Definition 6 Given two oblivious prediction functions, f
and g, and a sequence seS, the f,g-Entropy of s, denoted
by Ent; ¢(s), is defined as

=, fi,s(i)
2 )
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The symbol Enty g 4 (s) is used to represent the quantity

" F(i,s()
20 s

Note that Entg(s) = — In(Probs(s)).

It is easy to see that Enty¢(s) = Enty(s) — Enty(s)
whenever the limits make sense. Also, it is always true that
Ent; 4(s) = —Entg s(s) and Entsgn(s) = —Entg s n(s).
Later in this paper some simple conditions are presented
that imply

S L050) _

2 GG s)

almost everywhere (a.e.) with respect to Proby. If this
occurs, we will know that f is more likely the generating
function for s.

Definitions 7, 8, 10 and 11 define various form of dis-
tinguishable collection. All these collections have the prop-
erty that the “wrong” function will eventually have larger
entropy than the “correct” function. Hence, by choosing
the function with the smallest entropy, one eventually will
converge on the “correct function”.

Definition 7 Two oblivious prediction functions, f and
g, are said to be weakly distinguishable if given € >0 and
a natural number n, there exists a natural number kg such
that Vk > ko,

Probs(Ent; g5 <n) < € and Proby(Entysr<n)<e

Definition 8 Two oblivious prediction functions, f
and g, are said to be strongly distinguishable if
Probs(Eniy 4 = 00) = 1 and Proby(Enty; = 00) = 1.

The following theorem shows that, as one would hope,
strongly distinguishable is at least as restrictive condition
as weakly distinguishable.

Theorem 5 If two oblivious prediction functions f and g
are strongly distinguishable, then they are weakly distin-
guishable.

The following definition provides another approach to
the concept of strongly distinguishable and is a very useful
way to understand that concept.

Definition 9 Two probability measures, Prob; and Prob;
on the same measure space X, are said to be mutually sin-
gular if there exists a subset A of X such that Prob;(A) =
Proby(S — A) = 1. This is indicatled by the notation
Proby, L Prob,.

Theorem 6 If f and g are strongly distinguishable obliv-
ious prediction functions, then Prob; 1L Prob,.

The definitions of distinguishability for two functions
naturally extend to a finite set of oblivious prediction func-
tions.

Definition 10 A sequence fi, fo, ..., fnv of oblivious pre-
diction functions, is said to be weakly distinguishable if
given € > 0 and a natural number n, there exists a natural
number kg such that

Vk > ko,Vi # j, Probs (Enty, s, 1 < n) < €

1o

Definition 11 A sequence fi, f2,..., fn of oblivious pre-
diction functions, is said to be strongly distinguishable if
Probs,(Enty, s, = 00) =1 fori # j.

Theorem 7 Let f and g be oblivious prediction funclions.
If|If = gll2 = oo then f and g are weakly distinguishable.
If 3k,j € N such that Yoo (|lf — gll2,n)~* converyes,
then f and g are sirongly distinguishable.

Corollary 1 Let f and g be oblivious prediction functions.
If a constant ¢ > 0 exists such that, for all i but finitely

many, Zy(y (f(i,y) - g(i,y))2 > ¢, then f and g are
strongly distinguishable.

Now we mention a use of Theorem 7 in hypothesis
testing. To give evidence that Theorem 7 is a powerful
result, we will show how the strong law of large numbers
can be derived from it.

Example 1 Let coiny, and coing be two coins with prob-
abilities of an outcome HEAD q and q + 6, respectively,
with § > 0. Suppose we are given an infinite sequence of
outcomes generated by using only one of the two coimns.

Define two oblivious prediction functions f and g over
the domain N x {H,T}, as f(i,H) = 1 - f(3,T) =
q and g(i,H) = 1 — g(i,T) = ¢+ 6, for all natu-
ral numbers i. Since |f(i, H) — ¢(i, H)|®? + |f(:,T) -
g(i,T)|* = 262, by Corollary 1 it follows that f and g
are strongly distinguishable, that is Probs(Enty ;3 = 00) =1
and Proby(Enty; = 00) = 1. These two conditions can be
also writlen, respectively, as

q(1—q—96)

. 1—¢
Probsl 1 In—————"—" +kln———)=00]=1
7~O"(kljolo(nkn(l—q)(<1+5)+ nl—q—5) oc)
and

. (g+68)(1—7q) 1—g—6\_ \_
Probg(kliq;(nkln A= q=3) +kln - =oo}=1

where ny 1s the number of HEAD in the first k oulcomes.
In order that the two limils hold the following must be true

Proby (nk/k < a(q,8), for all but finitely many k )=1
and ’
Prob, (nx/k > a(q,6), for all but finitely many k )=1

where

Some algebra shows that
g<al(gd)<qg+é

and thus we have that, as to be expected, the relative fre-
quency of HEAD is close to the probability of the coin
used. Since 6 was an arbitrary, but positive constant, we
have derived, as a corollary of our Theorem 7, the well
known strong law of large numbers, namely that if Sy is
the number of successes in the first k trials of a sequence
of Bernoulli irials, where q is the probability of success,
then, for every & > 0 with probability one there occur only
finitely many of the events

Sk

T—-q’>6,




Another consequence of Theorem 7 is the following

covollary 2 Let fy, fo,..., fn be oblivious prediction func-
gons. If lIfi—filla = 00, 1 < i < j < N then
fi, f2r o fn_are weakly distinguishable. If 3L,k € N
such that 3 oo ((I1fi = fillan) % converges for i # j, then
fl,fz,-u,fN are strongly distinguishable.

The above corollary gives us a simple sufficient condi-
tion for a finite set of oblivious prediction functions to be
weakly or strongly distinguishable. The same conditions
are not guaranteed to work for a countable infinite collec-
tion of functions fi, fa, ..., f;, ..., as the following example
shows.

Example 2 Let f and g be two arbilrary weakly distin-
guishable oblivious prediction functions with the same do-
main, and let o; be the ith raitonal number (according to
an indezing of the rational numbers). Define the functions
h; = aif + (1 — ai)g, for each natural number i. The se-
quence of oblivious prediction functions hy, hy, ..., hj, ... is
pairwise weakly distinguishable, that is any two functions
are weakly distinguishable, but Corollary 2 cannot be ez-
tended to them. More formally we will prove in the final
paper that given € > 0 and natural numbers n, k and i, the
set of functions h; such that Probhi(Enth..,hj,k >n)<e
is infinite.

Therefore we cannot use the same criterion suggested
by Corollary 2 when dealing with a infinite number of
oblivious prediction functions. Nonetheless we make use
of Corollary 2 to find the function really used to generate
the observed sequence. We will not use the entropy Ent;
as the only tool to distinguish among functions, but we
will take also in account the index i of each function. In-
formally speaking we will give a weight to functions, based
on their indexing.

Now we give a definition of distinguishability for an
infinite collection of functions. Let s; denote the k-tuple
(5(0),5(2), ..., s(k — 1)).

Definition 12 Let F = {f1, f2, .-, fi, ...} be a countable
collection of oblivious prediction functions. A function V :
NxN xY* S R?Y is called o validity function for F
if, given a natural number k and a k-tuple s; € y", it
is possible to compute the minimum min, ar V(i,k,s;).
Given a natural number j, the function V(3,+,-) ts called
the validity of the function fi in F.

Definition 13

A countable collection F = {f1, f2, s fir .-} of oblivious
prediction functions is said to be weakly distinguishable
if ¢ validity function V for F ezists such that, given € > 0
and natural numbers n and i, there exists a natural number
ko such that

Vk > ko,¥j # i, Prob; (V(j, k;si) — V(i, k,s5) < n) < ¢

Definition 14

A countable collection F = {f1, f2y s fiy ..} of oblivious
Prediction functions is said to be strongly distinguishable
;fE“A}Jalidiiy function V for F ezisis such that, for each

Probfi (kl-l.ngo(l}];? V(i k,s) - V(i,k,sk)) = oo) =1.

17

The existence of a validity function for a countable col-
lection F' of oblivious prediction functions naturally leads
to an algorithm for finding the generating function f;, pro-
vided that the collection F' is weakly distinguishable. In-
deed after reading the k" letter s(k) we choose the func-
tion f; with the minimum validity in F, i.e. that minimize
V(i k,si).

The following theorem gives a sufficient condition for
the existence of a validity function for a countable collec-
tion of oblivious prediction functions.

Theorem 8 Let F = {f, fo, ..., fi, ...} be a countable col-
leclion of oblivious prediction functions. If ||fi — fi|l2 =
0o, for i # j, then F ts weakly distinguishable. If for any
1,7, such that 0 < i < j < occ. k.l € N ezist such that
Sonet(Ifi = fillam)~* converges, then F is strongly distin-
guishable.

Theorem 9 —Inwval(i, k,s) suffices as a validity function
to obtain the result claimed in Theorem 8.

Validity functions must be constructed carefully. At
one point, we thought that logi + Enty, ,(s) would be a
validity function, but we were able to construct a counter-
example.

These theorems are thus the analogue of Theorem 7
but for a countable collection of oblivious prediction func-
tions. The validity function plays the same role of the
entropy function, assuring the existence of a natural algo-
rithm for finding the generating function.

Thus it accomplishes our purpose. From the output
of an arbitrary but unknown oblivious prediction function
we can “learn” a model of the sequence of events based
on the given collection of functions. In other words, if we
are given a countable number of explanations (modelled
by probabilistic functions), and experimental results (the
sequence output of an arbitrary but unknown of this func-
tions), it is possible to “learn” the correct explanation for
the experimental results (there exists an algorithm that
will find the function used to generate the sequence).

5.2.1 Dependent Prediction Functions.

As for oblivious prediction functions, each dependent
prediction function gives rise to a probability measure on
the set of sequences Sin a fairly natural way. For this aim
we need the following definitions.

Let o be a finite string and denote by o(k) its k**
symbol and by o; its prefix of length j, ie. o; =
g(0)o(1)...0(j - 1).

Definition 15 For each dependent prediction function f

and natural number i there is a natural probability measure
on Y* denoted by Prob;; and defined as

i—1
Vo € ¥, Proby (o) =[] f(oj,0(s)).
ji=0

Each Prob;; is a probability measure on Y*. From
these measures there is a natural way to create a probabil-
ity measure Prob; on the set of sequences S, by looking
at each position of the sequences and considering the cor-
responding probabilities, much as is done with oblivious
prediction functions. This is described in the following
theorem.




Theorem 10 Given a dependent prediction function, f,
there exists a unique probability measure, Probs on'S  hav-
ing the following property: for all finite subsets M of N and
subsets {Y; CY |ieM},

Proby({seS | VieM, s(i)eY;}) = Probs m ().

2

{o|VieM,o(3)€Y:}

where m = max{i € M}.

There is a close relationship between dependent pre-
diction functions and oblivious prediction functions. From
a dependent prediction function it is possible to derive an
oblivious prediction function, based on a fixed infinite se-
quence.

Definition 16 An oblivious prediction function f' is sard
{0 be s-derived from a dependent prediction function f and
a sequence s € S if f'(i,y) = f(si,9), for alli € N and
yey.

There is a natural way to extend the notions of dis-
tinguishability from oblivious prediction functions to de-
pendent prediction functions, using the above concept of
s-derivation.

Definition 17

A countable collection F {f1, f2y e fir -} of depen-
dent prediction functions s said to be weakly (strongly)
s-distinguishable if the collection of s-derived prediction
functions F' = {fi, f2, oy fly o} is weakly (strongly) dis-
tinguishable.

Notice that the notion of distinguishability for depen-
dent prediction functions is based on a fixed sequence s.
It can be the case that two dependent prediction functions
are s-distinguishable only for some sequences s, as the fol-
lowing examples show.

Example 3 Let ¥ = {a,b}. And let f' and ¢’ be two
weakly (strongly) distinguishable oblivious prediction func-
tions, with f'(0,a) = f(0,) = ¢'(0,a) = ¢'(0,0) = 1/2.
Define two dependent prediciion functions g and f as fol-
lows, for any 1> 0,5, €S and ye ),

f(siry) :f’(?z(/) i)
) = "(i,y), ifs(0)=a
905 9) “{ g'(i,y), ifs(0)=b.

It is easily seen that f and g are weakly (strongly)
s-distinguishable if and only if the first digit of s is b.

A more natural and intriguing example is the following

Example 4 Consider the two Markov chains of Figure 1,
each with 4 states, stateg, statey, statez, and states.
They output one of the three symbols of the alphabet Y =
{a,b,c}, whenever they make a transition.

Essentially they are the same chain but with a differ-
ent initial state. If the first output symbol is b, then the
{two sources reach the same state after the first transition:
hence they will have the same behavior from this point on.
But if the first symbol is ¢, and the second is b, then the
two sources will never reach a point in which they will have
the same behavior.

[RE

Figure 1

Each Markov source defines a dependent prediction
function in a natural way. The two dependent predic-
tion functions are sirongly s-distinguishable for any se-
quence s that begins with ¢b. Bul they are not strongly
s-distinguishable for any sequence s that begins with b.

Thus far we have defined the notion of distinguishabil-
ity with respect to an infinite sequence. It may be the case,
as the above examples show, that all sequences (but a set
of measure zero) with a common finite prefix o always give
rise to s-derived distinguishable prediction functions. This
leads us to the notion of distinguishability with respect
to a finite string o. Informally, two dependent prediction
functions are distinguishable after a certain string o if they
are distinguishable on all the sequences in Sthat have o
as prefix, except for a set of measure zero. We will give a
formal definition of this notion.

Let o be a finite string. Denote by H, the set of all
the sequences s € S with o as prefix, ie. H, = {s €
S Vi < |o],s(i) = o(i)}.

Definition 18 Two dependent prediction functions, f and
g, are said to be weakly (strongly) o-distinguishable if the
set H of sequences s € Hgy for which they are weakly
(strongly) s-distinguishable satisfies

Prob,(H) =1 and Prob;(H) =1

Example 5 We will refer to Ezamples 3 and 4 to illus-
irate the notion of o-distinguishability.

Consider the Example 3. Then f and g are weakly
b-distinguishable, but they are not weakly s-distinguishable
for any of the sequences s with a as @ prefiz.

Now, consider the Ezample 4. The two depen-
dent prediction functions defined by the Markov sources
are strongly cb-distinguishable, but they are not weakly
s-distinguishable for any of the sequences s with b as the
first symbol.

The following corollary shows that stron gly o-
distinguishable is at least as restrictive condition as weakly
o-distinguishable. :

Corollary 3 If two dependent prediction functions f and
g are strongly o-distinguishable, then they are weakly
o-distinguishable.

Theorem 11 Let F' be a countable collection of dependent
prediction functions. Let s be a sequence generated from
feF.If
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1. for all s; there is a recursive enumeration of functions
g tn F such that g and f are weakly s;-distinguishablc,
9. with probability one s will separate funclions ¢; inlo
one of two class, either those that will be listed in the
enumeration above or those for which an iy ezists such
that for all i > ig q(s:,v) = f(si,y).
then we can find the gencrating function or one which is
not sg-distinguishable after an initial prefiz si.

A consequence of Theorem 11 is the following

Corollary 4 Let I be a countable collection of dependent
prediction funclions. Let s be a sequence generated from
f € F. If for all s; there is an algorithm that for any two
functions in F' oulpuls yes or no, depending if they are
weakly s;-distinguishable, then we can find the generaling
function or one which is not sp-distinguishable after an
initial prefiz s;.

We give the next corollary as an illustration of the
way in which Theorem 11 may be used.

Corollary 5 There is an algorithm which, given a se-
quence generated by any Markov model, with probability
one finds a Markov model which gives identical probabili-
ties to the original Markov model after a finile prefiz.

Proof’s sketch: First we must establish that two Markov
models will ultimately become identical or infinitely often
give different probabilities. To do this we consider the au-
tomata which is the cross product of the two Markov mod-
els. This automata has a state corresponding to each of
the pair of states from the two machines. Eliminate all
transition which both models give zero probability. Ulti-
mately, this automata, with probability 1, must end up
in a strongly connected region with no exits from the re-
gion except possibly exits with zero probability. In this
region either the transition probabilities given by the two
models are the same, or they differ. If there is a transi-
tion on which the two machines give different probabili-
ties, then with probability 1 that will be visited infinitely
often. Thus, there is some fixed amount by which the two
prediction functions will differ infinitely often. By Corol-
lary 1 this is sufficient to prove that they are strongly dis-
tinguishable. Now the preconditions of Theorem 11 have
been established, and the result follows from it. 1
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