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Abstract

Thi .
preseﬁt ep:pl::r shows how to comput.e efficiently meets and joins of permutations. The algorithms
ere have a worst case time of O(N?) and a space requirement of O(N). The paper

discusses how to adapt these algori
e gorithms for computing the meet joins i
commutativity lattices of Bennett and Birkhoff (1990‘)), ’ rects and Joins i the Newman

Beﬁ\:}g){/ :[I;m;.n:( li‘n ftfha;z;t(;i)ce of n-element permutations, S,, has a complement; see, for example
irkhos . Since §,, is semidistributive (Du th, 16 i ,
. quenne and Cherfouh, 1991), it is al

z:e::(;:::‘l:lfmen.ted. As shown by Chameni-Nembua and Monjardet (1992, 1993) the coznplem:nstz
at, x, in a complemented and pseudocomplemented latti an i i

clement being the. moer p! : attice form an interval with the top
pseudocomplement of x, x*, while the bottom el i joi

- » X7, ement - -

complement of x, x". This paper describes how to compute x* and x’. ment i the Joln-pseudo

Th . R .
gron e zxfatgnafl deveioped in ’thls paper is used to prove a result of Bj6rner that the automorphism
aum,‘:, o h'" or n_.3 consnst§ of exactly 2 elements. The group of automorphisms and dual

phisms of S, is the Kiein, 4-group. Finally, the poset of irreducibles for S, is characterized.

Ke . NN L
'y words: Permutation; lattice; Meet-semidistributive; Join-pseudocomplement

1. Basic concepts

The group of all permutations of an n-element set is an example of a Coxeter
]gérr(::}x]p.t C(:jxet'er groups are commonly ordered using three orderings: (strong)
o at or ermg,.!.eft weak Bruhat ordering and right weak Bruhat ordering (see

JoLner, 1984; Bjo‘rner and Wachs, 1988; and Humphreys, 1990, for details). The
l\;fgcelsruﬁat oildermgs are of particular interest because they produce isomo‘rphic
P v; ent e Coxet‘er groups are finite (Bjorner, 1984; Le Conte de Poly-

r l.lt, 992).' Smc_e this paper focuses on permutation groups, we will use the
(olr;igéx)n%v E?:;,i in Guﬂ.ba:ld and Rosenstiehl (1963) and Yanagim(;to and Okamoto

IS equiv i
withont ron 15 ?0 Cf(i) :éltte rtog r:)h:,psv'veak Bruhat orderings but can be defined
Throughout this paper, # represents the set {1,...,n}, and S, represents the

symmetric group of all permutations i
! o on n. Unless otherw i
arbitrary positive integer. e stated, m s an

$8DI0165-4896(93)00731-9
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Notation 1. We will represent members of S, by strings of integers. Let 0 €S,
and i € n, then index(a, i) is the position of i in o, when o is written as a string.
For example, if o = 4312, index(a, 2) = 4. When discussing permutations repre-
sented by strings, the terms prefix and suffix shall have their usual meaning. a

Definition 1. Let o, 7€ S,. We say that o< if for all i, j€En, (i<j) and
(index(o, i) >index(o, j)) imply that (index(m, i) > index(mw, j)). Given o €S,
an ordered pair (i, j) is called an inversion in o if i<j and index(o,i)>
index(o, j). O

Remark 1. It is easy to see that < is a partial order. Permutations can also be
thought of as functions, in which case the permutation o = 4312 is the function
having o(1) =4, ¢(2) =3, etc. This interpretation permits a different partial
ordering. If o, mES,, we can define o= if for all i, jEn, (i<j) and
(o(i) > a(j)) imply (a(i) > m(j)). This ordering and the one defined in Defini-
tion 1 are the two kinds of weak Bruhat ordering and give isomorphic posets, with
the isomorphism being given by the map o— o', Figure 2 in Bennett and
Birkhoff (1990) illustrates the different orderings for S,. Since there is no need to
discuss both partial orders, only the ordering introduced in Definition 1 will be
discussed in the remainder of this paper. O

Remark 2. Bennett and Birkhoff (1990) show how the partial order on S, can be
derived from the covering relation o <, meaning that a pair of adjacent
elements, a and b with a < b, in the string representation of o, are swapped. We
will call such a pair of elements an increasing adjacent pair. For example,
3142 <3412 because the pair 14 was swapped. Throughout this paper we assume
n =3 since the cases n <3 are trivial: S, is the one-element lattice and S, is the
two-element lattice.

Notation 2. For o € S,,, let Inv(o) = {(i, j)| i <j, and index(z, i) >index(o, j)},
Agr(a) = {(i, j)| i <j, and index(o, i) <index(o, j)}. Also let 2(n) be the set
{(i, ))|i, j€n and i <j}. Thus, Inv(c) is the set of all inversions in o, Agr(o)
the set of all pairs whose natural ordering agrees with their ordering in o, and
Inv(o) U Agr(o) = (o).

For example, Inv(4312)={(1,3), (1,4), (2,3), (2,4), (3,4)}, and Inv(n
(n—1)(n—2)...321) = 2(n). It is easy to see that for o, 7 €S,, o == if and
only if Inv(o) ClInv(s). O

Remark 3. That (S,, <) is a lattice appears to have been first proved by Guilbaud
and Rosenstiehl (1963), but has been discovered by other authors as well. In
particular, in their proof, Yanagimoto and Okamoto (1969) ordered permutations
by inclusion on the sets of pairs (i, j) such that i<j and index (o, i)<
index(o, j), and characterized the sets of pairs which are associated with a
permutation. This characterization can be used to show that S, is a lattice, but
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does.n‘ot immediately translate into an efficient algorithm for calculating meets
and joins. The next section provides a short proof that S, is a lattice which also
provides efficient algorithms for computing joins and meets.

Definition 2. Let 0 € S,. The reversal of o, denoted by o*, is the permutation
written in reverse order. [

Remark 4. For example, 4312* =2134. We use * for reversal since o* is the

orthocomplement of o. Note that Inv(e')= (n) - Inv(c) = Agr(o), where
g€ES,. o

2. Calculating meets and joins efficiently

Definition 3. For a permutation a = «, ... eyney,, . . . a, of n define the n-cut of

@ to be the pair (A, A*), where A is the string «, ... a, and A* is the string
d

Qg o @, .
Remark 5. In the n-cut of a, either A or A* can be empty. Given the n-cut of a,
a#can b#e written as AnA*. Furthermore, if « (= AnA*)= B (= BnB*), then
A" C B” since any inversion (n, i) in @ must be in B. For notational convenience
we will treat strings as if they are also sets of integers. Thus, A C B between
strings means that every character appearing in A appears somewhere in B
although it could be in a different position.

If @ = AnA”, let a " denote the permutation corresponding to AA*, so that a"is
a permutation of n— 1. If a =< B, then a" < 8",

Theorem 1 gives a short proof that S, is a lattice and provides an approach for
efficiently calculating meets and joins. The proof developed out of a series of
exchanges between M.K. Bennett, Garrett Birkhoff and myself. An early version
of these results appeared in Markowsky (1990a). O

Theorem 1. (a) S, is a lattice. Given c and Bin S,, a v Band a A B are computed
recursively as follows. Let m=a"v B", §=a" A B°, (A, A*) be the n-cut of a,
and (B, B*) be the n-cut of B. Then a v B = CnC*, where C* is the smallest suffix
of m which contains A* U B* and = = CC*. Similarly, a A B = DnD*, where D is
the smallest prefix of 8 which contains AU B and & = DD*.

(b) Inv(a v B)= (Inv(a) UInv(B)) and Agr(a A B)=(Agr(a) U Agr(B))",
where W' denotes the transitive closure of W C ()(n), in the sense that if (i, )
(j, k)E W, then (i, k)E W. ,’

(c) For every n, S, is an orthocomplemented, graded lattice.

Proof. (a) and (b). If (i, j), (j, k) € Inv(m), then it is easy to see that (i, k) €
Inv(m). . Thus, (Inv(a)UInv(B))“Clnv(e v ). Similarly, (Agr(a)U
Agr(B))* C Agr(a A B). Thus, we will only be concerned with proving the
reverse inclusions.
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The proof is by induction on n and is given only for a v B. S, is clearly a lattice.
Let 7 = CnC*. Since a"<m, Inv(a)CInv(m"). Since C* contains A” it
follows that Inv(a) C Inv(w*). Thus, @ < #*. Similarly, 8 < #". By the induction
hypothesis, Inv(r) = (Inv(a”) U Inv(B7))"

Now suppose that a, 8 < o. Since a”, B"< ¢, it follows from the induction
hypothesis that 7 < ¢". Thus, every inversion in " not involving n is contained
in o. If g€ A* U B*, then (g, n) is an inversion in a or B and so must be an
inversion in o. Suppose that g€ C * — A* U B* Since C* is not empty, let ¢ be
the first element in C*. By the minimality of C * ¢ must be in either A* or B*. We
may assume that t € A*. Thus, the inversion (¢, n) is in @ and hence in 0. If t> g,
then (g, t) is an inversion in 7" not involving n and must be an inversion in o.
Thus in o, n is to the left of ¢ and ¢ is to the left of g, so n is to the left of q. This
means that (g, n) is an inversion in o. On the other hand, if g > ¢, then (t, 9)
must be an inversion in « since g &€ A* and t € A*. If (¢, ) is an inversion in a it
must be an inversion in «*, which contradicts the fact that ¢ precedes g in .
Thus, we have shown that if (g, n) € Inv(# "), then (g, n) € Inv(), so Tt =0

To show that (b) holds, we need only consider pairs of the form (g, n) since (b)
holds for m. The preceding paragraph proves that if (gq,n)€ Inv(#") and
geC* — A* UB”* then t>gq. Since t€ A*, (t,n)Elnv(a). Since (q,t)E
Inv(7r), by the induction hypothesis there is a chain ¢ =p, <p,<-'-<p,_, =!
such that (p,, py.;) EInv(a)UInv(B") for i=1,...,r—2. If we let n=p,,
then (b) holds.

(c) The orthogonal complement of a €5, a’, is its reversal. S, is graded
because if a covers B, a has one more inversion than B derived from swapping
two elements that are adjacent in 8. O

Theorem 1 can be used as a basis for a reasonably efficient algorithm for
computing meets and joins in S, that is described in detail in Theorem 2.
Theorem 1 also shows that the map e — a " is a lattice epimorphism.

Theorem 2. Let a, BE S,. Then a v B (a A B) can be calculated as follows. Let
m, (8,) be the string 1. Given the string m, (8,) which consists of the integers in i,
create the string m,, ,(5,,,) by placing i + 1 immediately to the left (right) of the
leftmost (rightmost) element of m,(8;) that follows ( precedes) i + 1 in either a or B,
and to the right (left) of m, (8,) if there does not exist such an element. The string
m,=av B (8,=anp) and for each i, Inv(m,) =Inv(e v B) N (i) (Inv(,) =
Inv(a A B) N £2(i)).

Proof. We will do the proof only for v, since the proof for A is similar. The
following is clear from the proof of Theorem 1: when n is added to the string it
must be to the left of all elements in A* U B*. At the same time, its immediate
neighbor to the right in , must be an element of A* U B*. Thus, the algorithm
for inserting n is to start at the left and let n drift to the right until it encounters
the first element that must be to the right of it. [
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Example 1. Let a =3174652 and B =4732651. To compute a v B using the
algorithm of Theorem 2 proceed as follows.

Step 1: =, is 1.

Step 2: m,=21 since 2 comes before 1 in B.

Step 3: Since 3 comes before both 1 and 2 in both « and 8, 7, = 321.

Step 4: Since 4 precedes 3 in B, 7, = 4321.

Step 5: Since 5 follows 3 and 4 in both « and 8, but precedes 2 in a, s = 43521.
Step 6: Since 6 follows 3 and 4 in both « and B, but precedes 5 in a, 7, = 436521.
Step 7: Since 7 precedes 4 in a, m, is 7436521.

The algorithms presented in Theorem 2 takes time O(n®) and space O(n).
Theorem 2 can be extended to permutations on sets of the form a, a + 1,...,b

rather than just 1. .. i The statement and proof of this result are left as exercises
for the reader. O

Definition 4. A lattice, L, is meet-semidistributive if and only for all x,a, bE L,
X Aa=xAb implies that x A (a v b)=x A a. Join-semidistributivity is defined

t.ju‘ally, and a lattice is said to be semidistributive if it is both meet- and
join-semidistributive.

Definition 5. I'n a lattice with a least element, a meet-pseudocomplement for an
element, x, is an element y such that x A2=0 iff z< y. A join-pseudo-
complement is defined dually. O

Remark 6. It is easy to see that if a finite lattice is semidistributive it is also
pseudocomplemented. Furthermore, in a complemented lattice, a meet-pseudo-
complement or a join-pseudocomplement must be a complement. [J

Theorem 2 can be used to give a short, direct proof of the result of Duquenne
and Cherfouh (1991) that S, is semidistributive. In view of Remark 6, this also
shows that it is pseudocomplemented, a result that Chameni-Nembua and
Monjardet (1992) credit to personal communications from C. Le Conte de
Poly-Barbut. Recently, Le Conte de Poly-Barbut (1992) has generalized the
Duquenne and Cherfouh result and show that all finite Coxeter lattices are
semidistributive.

In cases where « and B have certain structures it is possible to see that certain

cor}tiguous blocks of integers will pass unchanged into the meet or join of @ and 7.
This is illustrated in Theorem 3.

Theorem 3. Suppose that a, B € S, are represented as strings of integers. Further,
suppose that the representations have the forms a = L1 M R1 and B=L2MR2,
where L1 and L2 contain exactly the same integers, but are not necessarily the same
strings. Let 6=arBand m=avB. Then8=L3MR3and n=L4M R4, where
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L3 and L4 contain the same integers as L1 and L2, and R3 and R4 contain the
same integers as R1 and R2.

Proof. The proof is by induction on n with the case n =1 being trivial. We will
just give the proof for a A B. First note that «"=P1 Q T1 and 8" = P2 Q T2,
where PI and P2, and T1 and T2 contain the same integers. By the inductive
hypothesis it follows that a”A B* = P3 Q T3, where P3 contains the same integers
as P1 and P2, while T3 contains the same integers as T1 and T2. To construct
a A B it is necessary to insert n into the correct place in a” A 8. It is easy to see
that n goes into P3if n € L1 N L2, n goes into Q if n € M and n goes into T3 if
n € R1 N R2. Thus 8 has the structure L3 M R3. O

Example 2. If o = 3274651 and B = 4732651, we can apply Theorem 3 to see that
the last three characters of 8 must be 651. We need only calculate the meet of
3274 and 4732 which we can treat like 2143 and 3421 in S,. After computing the
meet in S, to get 2134 we convert back using the relations 1—-2,2—3,3— 4, and
4—7 to get 3247, so the final answer is 3247651. O

3. Calculating meets and joins in the Newman lattices

Bennett and Birkhoff (1990) describe a generalization of the positional order-
ing on permutations to multi-permutations, which are like permutations except
that elements can be repeated. 12213 is an example of a multi-permutation. The
algorithm of Section 2 can be used to compute the meets and joins of multi-
permutations by converting the multi-permutations into permutations, using the
algorithms and converting back. Converting between multi-permutations and
permutations is used by Bennett and Birkhoff (1990) to prove that multi-
permutations are sublattices of the permutation lattices.

The conversions can be done in linear time and space. For example, 12213 can
be represented by the permutation 13425, where 1 and 2 represent the two 1’s, 3
and 4 represent the two 2’s and 5 represents the only 3. In fact, the lattice of all
multi-permutations having two 1’s, two 2’s and one 3 is isomorphic to the interval
(sublattice) [12345, 53412] of S,. As long as the first 1 always comes before the
second 1, etc. there is no ambiguity in converting between multi-permutations and
permutations. Bennet and Birkhoff (1990) use the integers m,, m,,..., m, to
indicate the number of times 1,2, ..., k appear in the multi-permutation.

4. Complements
Chameni-Nembua and Monjardet (1992, 1993) make some interesting observa-

tions about the structure of finite pseudocomplemented lattices and in particular
about lattices that are also complemented. They show that in all such lattices, the

j
3
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Glivenko congruence ‘to have the same meet pseudocomplement’ is the same as
‘to have the same join pseudocomplement’ is the same as ‘to have the same
complements’. The classes of this congruence are the 2" intervals [VA(x),
AC(x)], where A(x) = {atoms a|a =< x} and C(x) = {coatoms c|c = x}, where n
is the number of atoms or coatoms of L. In particular, it follows that the
complements of an element form an interval with the top element being the meet
pseudocomplement of x, x*, while the bottom element is the join pseudo-
complement of x, x".

To apply these results to S, requires showing that S, is complemented and
pseudocomplemented. It is easy to see that S, is complemented. That S, is
pseudocomplemented follows from the fact, stated in Section 2, that S, is
semidistributive.

This section briefly sketches an alternative method for proving that S, is
pseudocomplemented, and gives some insight into the Glivenko interval structure
of §, and the process of computing pseudocomplements. The fact that the
complements of an element in S, form an interval was independently discovered
by Markowsky (1990b).

Definition 6. An element, x, of a lattice, L, is said to be coprime ( prime) if for all
V,ZEL, x<yvz (x=yAz) implies that x<yorx=<z (x=yorx=z). O

Theorem 5 of Markowsky (1992) states that a finite lattice is pseudocom-
plemented if and only if each atom is coprime and each coatom is prime.

Theorem 4. Each atom of S, is coprime .and each coatom of S, is prime.
Furthermore, in S, I is the join of the atoms and O is the meet of the coatoms.
Consequently, S, is pseudocomplemented.

Proof. The atoms of S, are exactly the permutations of the form 12...(g +1)
q . . . n which have exactly one inversion. The coatoms are reversals of the atoms.
It is easy to see that the atoms are coprime since a pair (g, ¢ + 1) can be in the
transitive closure of a set of inversions if and only if it is in the original set.
Similarly, the coatoms are prime. It follows easily from Theorem 2 that I is the
join of the atoms and O the meet of the coatoms. I

The following material helps us describe how to compute the meet-pseudo-
complement, o*, and the join-pseudocomplement, o', of an arbitrary permuta-
tion, o.

Notation 3. Let 0 €S,. Then Comp(o)={r€S,|7A0=0 and v o=1I)}.
Also, CInv(o) = {(i, i + 1)| (i, i + 1) € Inv(c)}. Clnv is shorthand for consecutive
inversions. The symbol C2(n) will denote the set {(i,i+1)|i€n—-1}. O

Theorem 5. Let o and 7 belong to S,,, then Clnv(o) N Clnv(r) = CInv(o A 7) and
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CInv(g) U Clnv(r) = Clnv(o v 7). Thus, v € Comp(a) if and only if Clnv(r) =
CL2(n) ~ Clnv(o).

Proof. Since no element can interpose between i and i+ 1, it follows from
Theorem 1 that (i,i+1)€ClInv(e v 7) iff (i,i+ 1) €€ CInv(c) U CInv(r). The !

result for A is dual. If 7€ Comp(o), then Clnv(g) U CInv(r) = Clnv(n(n — 1)
... 1)=C{82(n) and Clnv(c) N CInv(r) = CInv(12. .. (n — 1)n) = @, so Clnv(r) =
C{(n) — CInv(o). On the other hand, if ClInv(7)=CQ(n)—- Clnv(o), then
Clnv(c A7)=0, so o AT=12...(n—1)n. Similarly, o vr=n(n—-1)...2L

O

Corollary. For all o€ S,, Comp(a) is closed under meet and join. Thus,
Comp(o) is a sublattice of S,. In fact, Comp(c) =[c*, o'].

Proof. We will prove that Comp(c) is closed under meet. The result for join is
dual. Suppose a, B € Comp(o). This means that Clnv(a) = CInv(B) = C(n) —
CInv(o). From Theorem 5, it follows that Clnv(a v 8) = Clnv(a A B) =
CQ(n) — Clnv(o). Applying Theorem S again we see that av B, aABE
Comp(o).

Since Comp(c) is a finite lattice it follows that it has a least element, o', and a
greatest element, o*. It is routine to show that Comp(o) = [¢', o*], and that o'
is join-pseudocomplement and o* the meet-pseudocomplement of . O

Remark 7. Theorem 5 gives the essential ideas needed for calculating o and o*.
It is enough to focus on calculating o' since o* = o*'*. It is easy to see that
o* € Comp(o). In general 0" < ¢* < ¢*, and all three complements are distinct.

Fig. 1. The lattice §, showing the complements of 1324.
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For example, 5376214" = 4126735, 5376214" = 1243657 and 5376214* = 6745123.

o' is computed by starting with the identity permutation and making the
smallest number of reversals that will yield a permutation 7 such that Clnv(#) =
C(n) — CInv(o). To illustrate the algorithm let us consider finding o' and o* for
o =5376214. Clnv(o) = {(2,1), (3,2), (5,4), (7,6)} so for any complement 7,
CInv(m) = {(4, 3), (6, 5)}. To have the fewest reversed pairs we take 1234567 and
reverse only what needs to be reversed. In this case just the pairs 34 and 56 must
be reversed to yield 1243657. If Clnv(w) was the set {(4,3), (5,4), (6,5)} we
would have to get a decreasing chain 654 since 6 comes before 5 and 5 comes
before 4. In this case the least complement would be 1236547.

To compute o*, first compute a = o™ = 4126735. Clnv(a) = {(4, 3), (6, 5)} so
for all B € Comp(a), CInv(B)={(2,1), (3,2), (5,4), (7,6)}. This means that
a' =3215476, so0 o* = «'* = 6745123. Fig. 1 shows the complements of 1324 in
S,.

S. Automorphisms and dual-automorphisms
Definition 7. Let the map 3': S, — S, be given by (3(0))()) =(n+1)— o(i). O

Notation 4. For convenience, in this section we will use the function symbol R
instead of *. Note that for all o € S,, (R(e))(i)=o(n+1—i) foralli€n. O

This section examines the automorphisms and dual-automorphisms (involations
in the sense of Birkhoff, 1967, p. 3) of S, and shows that the automorphism group
is the two-element group. This result is attributed to Anders Bjorner by Kung and
Sutherland (1988), but to the best of my knowledge, Bjorner has never published
this result. This result was also independently published by Le Conte de Poly-
Barbut (1990a). Since my proof, which first appeared in Markowsky (1990b),
follows a similar strategy to his, I will omit many of the details. Kung and
Sutherland (1988) contains a determination of the automorphism of the permuta-
tions under the strong Bruhat ordering. Le Conte de Poly-Barbut (1990b)
contains a description of the permutation lattice as the intersection of two direct
products of linear orders.

To analyze the automorphisms and dual automorphisms of S,, the first step is
to show that R and X are involutions such that R3 = IR, or RY is an auto-
morphism of order 2. We will show that the group {Id, R, 3, R3} is the Klein
4-group where every non-identity has period 2, and is the complete group of
automorphisms and dual-automorphisms of the lattice S, for n>2. Lemma 1
presents some properties of the map 3 that will be useful later. Its proof is left to
the reader.

Lemma 1. Inv(Z(0)={(, j)|j>i, j, i€n, and (n+1-j, n+1-i)€
Agr(o)}={(n+1-b,n+1-a)|b>a, a, bEn, and (a, b) € Agr(c)}. O




68 G. Markowsky | Mathematical Social Sciences 27 (1994) 59-72

Theorem 6.

(@) 3 is an involution.

(b) For all 0 €S,, 3(R(a)) = R(Z(0)).

(c) For n=3, RY is an automorphism of degree 2.

(d) For n=3, S, has exactly two automorphisms: identity and RS. Forn=2, S,
has exactly one automorphism.

(e) For n=3, S, has only two dual automorphisms: R and 3. For n<2, S, has
exactly one dual automorphism.

Proof. (a) From Lemma 1 it follows that o < = if and only if Inv(¢) C Inv(ar) if
and only if Inv(Z(c)) 2 Inv(Z(#)) if and only if (o) = 2 (o). This shows that X is
a dual automorphism. (Z(S())(@)=n+1-(S(e)N(@)=n+1-(n+1-
a(i)) = o(i) for all i, so 2(2(0))=o.

(b)) G(R@ME) = n+1-(R(0))(i) =
C)n+1-i)=n+1-0on+1-1i).

(c) Part (b) implies that RXRS = RX3R = RR =identity. For n=3, RY #
identity since RZ(2134...n)=R((n-Nn(n-2)...1)=1...(n=2)n(n - 1)
#2134...n

(d) For n =<2, the result is trivial. For n =3, part (c) shows that there are at
least two automorphisms. That there are only two is shown below in a series of
lemmas.

(e) For n =<2, the result is trivial. For n =3, proceed as follows. Since R is a
dual automorphism, it follows that if I" is a dual automorphlsm, RI' is an
automorphism. From part (d), RI" = identity or RZ. Since R=R" ! this means
that '=Ror3 0O

n+l—oa(n+1-i). (RE()E) =

The proof of Theorem 6(d) uses the following observations about any auto-
morphism I’ of S, :

(1) It must preserve height. h#(o) will denote the height of o in §,.

(2) If ¢ €S, then ht(s") = ht(I'(0)").

(3) If o €8, is join-irreducible, then I'(o) is join-irreducible.

The proof of Theorem 6(d) first shows that all automorphisms behave either
like the identity or R on the individual atoms of S,. Next it extends this result to
the set of all atoms considered as an ordered structure. Finally, it shows that the
result holds for S,,.

Lemma 2. Let I': S,— S, be an automorphism and let a € S, be an atom. Then
I'(a) = « or I'(a) = R(3(a)).

Proof. If « is an atom, then 3kE€n—1 such that a =12...(k—1)(k + 1)k
(k+2)...n. Thus, a'=k...1n...(k+1), so ht(a’)=]Inv(a")|=
BIN(k, 2) + BIN(n — k, 2), where BIN( p, ¢) is the binomial coefficient giving the
number of g element subsets of a p element set. Since ht(a ™) is quadratlc in k,
there are at most two values of k that produce the same height for a”. When
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k# n/2, the two values are k and n — k. When k = n/2, height has a unique
minimum at n/2.

Now let p = R(3(a)). Since R3 is an automorphism, ht(u')=ht(a'). If
k#n/2, u+# a, while if k =n/2, u = a. If n is even, k = n/2 is a possible value
and the a corresponding to this value of & is invariant under all automorphisms
since ht(a') is less than At(B"), where B is any other atom. The element 1324 is
this unique element in Fig. 1. Since an automorphism must preserve ht(at), it
follows that for any automorphism I', I'(a) = a or R(Z(e)). O

Lemma 3. Let I': S,— S, be an automorphism. Then I' | Atoms = identity or R3.

Proof. Let a=1...(a—1)(a+1)a(@+2)...n and B=1...(b—1)(b+1)b
(b+2)...nbeatoms. Let 7 = a v B. Without loss of generality we may assume
that a < b. It is easy to see that = can have one of two forms. If a<b -1,
m=1...(a—D(@a+VDaa+2)...(b-1)b+1)b(b+2)...n, whileifa=>b~
1, 7=1...(b—2)b+1)b(b—1)b+2)...n. In the first case ht(7) =2 while
in the second case ht(#) = 3.

The sequence a,, a,, ... ,a,_;, where a,=1...
has the following properties:

(1) ht(e, v @;) =3 if and only if [i —j|=1.

@) RGE(@) =a,

(3) Every atom appears in the sequence.

If I is an automorphism of §,, the sequence I'(a;), I'(a,), . .., I'(a,_,) must
have properties (1) and (3). From Lemma 2 we know that I'(a,)= a, or
R(Z(a)))=a,_,. If I'(a;)=«,, properties (1) and (3) require that I'(a,)=
a,,...,(a,_;)=a,_;, so I'=identity in this case. If I'(a,;) = «@,_,, then prop-
erties (1) and (3) imply that I'(e;) = a,_, = R(Z(e;)) for all i, so I'= R in this
case.

(G-DG+1)i(1+2)...n

Lemma 4. Let 0 € S,.

(1) If o is not an atom, then o can be covered by at most one join-irreducible
element.

(2) If o is an atom, then o is covered by two join-irreducible elements if and
only if there exists k>0 such that o=1...k(k+2)(k+1)k+3)...n and
k+3=n.

(3) If o is an atom and o does not have the form described in (2), o is covered
by a unique join-irreducible element.

(4) O is covered by n— 1 join-irreducible elements

Proof. Part (4) is easy since the n — 1 join-irreducibles covering 12. .. n are the

permutations of the form 1...(a— 1)@+ 1)a(a+2)... nfora€En—1.
Bennett and Birkhoff (1990) established that B covers « iff we can swap an

adjacent pair of elements ji with j > i. We call a consecutive pair of integers in the

string representation of a permutation an increasing adjacent pair if the second
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number is greater than the first and a decreasing adjacent pair if the second
number is less than the first. For example, in the permutation 2143, 21 and 43 are
decreasing adjacent pairs, while 14 is an increasing adjacent pair.

A permutation 8 can be a join-irreducible if and only if there is just one
decreasing adjacent pair in its string representation. In particular, if 8 is a
join-irreducible in S, it must have the forma,a, ... a,bb, . .. b,, where p + g =
n,a,<a,<a;<---<a, <a,>b,<b,<---<b,_,<b,.

If n=3 and ht(¢) =1, o must have the form 1...(i+1)i(i+2)...n and
w=1...(i+1)(i+2)i...nis a join-irreducible that covers o. Thus, all atoms
are covered by at least one join-irreducible.

The element a covered by a join-irreducible 8 must have the form
a,...a, \ba,b,b,... b,. There are four cases to consider: a,_ , <b, and
a,<by;a, ,<b anda,>b,;a, ,>b,anda,<b,;anda,_,>b, and a,>b,.
Careful analysis of these four cases establishes the claims made by this lemma.

a

Proof of Theorem 6(d). Let I" be any automorphism of S,. By Lemma 3 I is
either the identity or RY on the atoms. I will now sketch the proof that if I' is the
identity on the atoms, then I' = identity on S,. The same proof shows that if I is
RX on the atoms, then I'=R3 on S,,.

The proof proceeds by induction on the height of the elements being consid-
ered. From Lemma 4, it follows that if ht(c) = k, then one of the following three
cases must hold:

(@) o =a v B, where ht(a) <ht(c) and ht(8) <ht(o).

(b) o is the unique join-irreducible covering «, where ht(a) = ht(g) — 1.

(c) o is one of two join-irreducibles covering @, where k=2 and ht(a) =
ht(g)—-1=1.

It is easy to see that in cases (a) and (b), I’ must be the identity on o as well.
From Lemma 4, case (c) happens only if « has the form 1... p(p +2)(p +1)
(p+3)...n, and the two join-irreducibles must have the forms 1...(p —1)
(p+2)p(p+1)(p+3)...n and 1...p(p+2)(p+3)(p+1)(p+4) ...n
There is no loss of generality in assuming that o is the first of the join-irreducibles
and 7 is the second. Since ht(a) =1, I'(a) = a by our initial assumption.

Let u=1...(p—1)(p+1)p(p+2)...n. Since ht(u)=1, I'(p) = . Now
ovep=1...(p—1)(p+2)(p+1)p(p+3)...n which has height 3. On the
otherhand, mv u=1...(p—1)(p +2)(p+3)(p+1)p(p+4)...n which has
height 5. Since I" must preserve height, I'(0) = o and I'(wr) = . This proves that
I is the identity on elements of height k. O

6. Poset of irreducibles
The poset of irreducibles, which is discussed in detail in Markowsky (1975),

provides much information about a lattice. Bennett and Birkhoff (1990) de-
termine the poset of irreducibles of the Tamari associativity lattices, and we will
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now determine the poset of irreducibles of S,. Since we are working only with
finite lattices, Definition 8 provides just what is needed in this case. For additional
information, see Markowsky (1975).

Definition 8. Let L be a finite lattice. Its poset of irreducibles is the bipartite
graph (J(L), M(L), Arcs(L)), where J(L) are the join-irreducibles of L, M(L)
are the meet-irreducibles of L and we have an arc from j € J(L) to m € M(L) if
and only if j Zm. Any x € J(L) N M(L) is represented by two distinct nodes, one
in J(L) and one in M(L). O

Theorem 7. The join-irreducibles of S, correspond uniquely to pairs of subsets of
n, (A, B), where A and B are complements and A+ i for all i. Similarly, the
meet-irreducibles of S, correspond uniquely to pairs of subsets of n, (C, D), where
C and D are complements and D # i for all i.

Let j be a join-irreducible of S, represented by (A, B), and m be a meet-
irreducible of S, represented by (C, D). We have that j¥m if and only if
max(A N D) >min(B N C).

Proof. As noted by Bennett and Birkhoff (1990, Theorem 7) and above, join-
irreducibles must look like a; <a,<-:-<a,>b,<b,<---<b,_,, while meet-
irreducibles must look like ¢,>¢,>---> ¢, <d>d,>--->d,_,. It is clear
that A={a,,a,,...,a,} and B={b,,b,,...,b, ,}. Given A there is only one
way to order the elements in A and B so the representation is unique. The result
for meet-irreducibles is dual.

Now jX'm if and only if there exist (g, ) € Inv(j) such that (g, r) €Inv(m).

~ This can happen if and only if g € A, r€ B, ¢ >r, g € D and r € C in which case

qEAND, reBNC and max(AND)=g>r=min(BN C). On the other
hand, if max(4 N D) > min(B N C), then both AN D and BN C are non-empty
since max(#) = 1 and min(#) = n. Let ¢ = max(4 N D) and r=min(B N C). It is
easy to see that (q, r) € Inv(j) but (g, r) €Inv(m) so that j £m. 0O

7. Programs

Markowsky (1990a, 1990b) include BASIC programs for computing joins and

‘ meets, translating between permutations and multi-permutations, and computing

pseudo-complements. These have been omitted from this paper, but are available

- from the author.
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