Necessary and Sufficient Conditions for
a Phenotype System to Have a Factor-Union Representation

GEORGE MARKOWSKY
Computer Sciences Department, IBM T. J. Watson Research Center,
Yorktown Heights, New York 10598

Received 8 June 1982; revised 22 April 1983

ABSTRACT

This paper presents an algorithm for determining whether a phenotype system has a
factor-union representation, i.e., whether sets of properties (factors) can be assigned to
alleles so that the phenotype of each genotype is determined by the union of the factor sets
of the alleles. If such a representation is possible, the algorithm can construct one using p or
fewer factors, where p is the number of phenotypes. Refinements to the algorithm are
presented that often construct representations using few factors. An example is presented to
show that some phenotype systems can be represented only by using almost as many factors
as there are phenotypes in the system. Finally, it is shown that the problem of finding
factor-union representations for multilocus systems reduces to the problem for 1-locus
systems.

1. INTRODUCTION

Cotterman [1] investigated the existence of factor-union representations
for phenotype systems and derived some partial answers. This paper com-
pletely solves the problem and presents an algorithm which always de-
termines whether a phenotype system has a factor-union representation. This
algorithm is efficient enough to be used manually on some large examples.

If a factor-union representation is possible for a phenotype system, the
algorithm can construct one using the phenotypes themselves as factors. In
general, this may use many more factors than necessary, since it is possible to
represent 2% distinct phenotypes with k factors. Refinements to the algorithm
can significantly reduce the number of factors required. As an example, two
representations are constructed for an example left unresolved in [1]. The
first one uses 12 factors, while the second one uses only 4.

An example in this paper shows that some phenotype systems require
almost as many factors to represent them as they have phenotypes. This

MATHEMATICAL BIOSCIENCES 66:115-128 (1983) 115

©Elsevier Science Publishing Co., Inc., 1983
52 Vanderbilt Ave., New York, NY 10017 0025-5564 /83 /$03.00

116 GEORGE MARKOWSKY

example is also of interest because the number of factors required grows
quadratically in the number of alleles, which shows that simple representa-
tions are not always possible.

The representations constructed by the algorithm need not be based on
actual physical factors. Determining a physical basis for a representation is a
problem that cannot be solved purely mathematically, but the mathematical
results can guide the search for suitable physical factors. Of course, if the
algorithm shows that no representation is possible, much valuable time can
be saved.

In Section 5, techniques are developed to translate multilocus systems into
1-locus systems so that finding a factor-union representation for one system
finds it for the other. Thus, this algorithm can be used with any phenotype
system.

2. DEFINITIONS AND NOTATION

Listed below are several simple definitions and concepts required for
understanding this paper. Many of them come from [1], which should be
consulted for general background on this topic. A few come from the theory
of partial orders.

(1) Lowercase letters denote alleles, Greek letters denote genotypes, and
uppercase letters denote phenotypes. Pairs of lowercase letters will be
used when it is desirable to show the alleles contained in a genotype.
Bracketed expressions such as {ab, ¢d) are used to show the genotypes in
a phenotype.

(2) If the two alleles in a genotype are the same, it is called a homozygote. 1f
they are different, it is called a heterozygote.

(3) The symbol + denotes the union of individual sets, & the union of a
family of sets, and [T the intersection of a family of sets. The symbols <
and < denote set inclusion and proper set inclusion respectively.

(4) A factor-union representation of a phenotype system @ consists of a set X
of factors, called the factor set, and an assignment f of subsets of X to the
alleles of @ with the following properties:

(a) If ab and cd are two genotypes in the same phenotype,
fla)+f(b)y=f(c)+f(d).
The set f(a) is called the factor set of a. If ab is in P then

fla)+f(b)= XL f(x).

xin P

CONDITIONS FOR PHENOTYPE SYSTEM 117

The quantity on the right side is abbreviated f(P) and called the
factor set of P. It is the union of the factor sets of all alleles in P.
(b) If P and Q are distinct phenotypes, f(P) = f(Q). This condition

states that phenotypes are determined by their factors.

(5) A partially ordered set (poser) is a set X together with a partial order <
defined on its elements. A partial order is any binary relation that
satisfies the following two rules:

(a) Reflexive property. For all x in X, x < x never holds.
(b) Transitive property. For all x,y,z in X, if x<y and y <z, then
x<z.

The string x < y means that either x < y or x = y. By convention, y > x
and y > x mean the same as x < y and x < y. The same symbols are used
for partial order and set inclusion. This should cause no confusion, since
set inclusion is a form of partial order.

(6) Let (X, <) be a poset and S a subset of X. An element z of X is called an
upper bound for § if it is greater than or equal to every element of S. An
element is the sup or least upper bound of S if it is an upper bound that is
less than or equal to every upper bound of S. In general, a subset of a
poset need not have a sup. A poset in which every finite nonempty subset
has a sup is called a semilattice.

(7) If X is a set, Power(X) denotes the power set of X, which is the set of all
subsets of X. Set inclusion is a partial order on Power(X). With this
order, Power(x) is a semilattice in which the sup of a family of sets is its
union.

3. THE ALGORITHM

The algorithm attempts to construct a partial order on the set of pheno-
types using necessary inclusion relations among the phenotypes. If the
algorithm fails to conmstruct a partial order, Theorem 2 shows that two
distinct phenotypes will have identical factor sets in any factor-union repre-
sentation. Thus no factor-union representation is possible. On the other
hand, if the algorithm constructs a partial order, a factor-union representa-
tion can be constructed using Theorem 1.

The following describes the part of the algorithm that determines whether
a factor-union system is possible. Theorem 2 proves that the algorithm is
correct and shows how to construct a factor-union representation.

FACTOR-UNION REPRESENTATION ALGORITHM (Existence Part)

1. Represent each phenotype of ® by a point.
2. For each ordered pair of distinct phenotypes (P, P;), draw an arrow
from P; to P, if and only if some genotype contained in P, has all its alleles

118 GEORGE MARKOWSKY

belonging to some genotype in P;. This step creates a directed graph having
the phenotypes as its points and arrows as its edges. This graph is called
Graph(®). If there is an arrow from P; to P;, then in any factor-union
representation, the factor set of P, is a subset of the factor set of P..

3. If Graph(®) has a cycle, i.e., a sequence of arrows from a point to
itself, ® does not have a factor-union representation. A cycle in Graph(®)
implies that all the factor sets connected by the arrows must be equal.

4. If Graph(®) does not have a cycle, define a partial order < on
Graph(®) as follows: P, < P; if and only if there is a sequence of arrows from
P, to P. A sequence of arrows from one point to another is called a path.
[The condition that there are no cycles in Graph(®) implies that < is
reflexive. Clearly, < is also transitive and so a partial order. If P, < P;, the
factor set of P, is a subset of the factor set of P, in any factor-union
representation.}

5. The next stage of the algorithm adds arrows to Graph(®) and extends
the partial order < until either a cycle appears in Graph(®) or there is no
further way to carry out the following rule.

ARROW-ADDING RULE

Let aa be in P, bb in P,, ab in P,, and P, a phenotype such that P, < P,
and P, < P, in Graph(®). Then add an arrow from P, to P, unless there
already is such an arrow.

As arrows are added to Graph(®), < must be updated. The partial order
is always defined in the same way relative to Graph(®), i.e., P < P* if and
only if there exists a path in Graph(®) from P to P*.

To use the Arrow-Adding Rule, choose a heterozygote ab. Then find the
phenotypes P, and P, that contain the homozygotes aa and bb. Next, find the
upper bounds of P, and P,. Finally, add the arrows from P; to the upper
bounds. The algorithm always halts, since Graph(P) can have at most
p(p —1)/2 arrows without having a cycle.

Instead of drawing all arrows in Graph(P), I will only draw an arrow
from P to Q if P < Q and there does not exist an R such that P< R< Q. In
this case Q is said to cover P. This representation, called the Hasse diagram,
contains all the information of the original graph, but is easier to draw and
interpret. The original order can be reconstructed from this reduced order by
transitivity. To further simplify the drawings, most arrow heads will be
omitted. Line segments will point from lower to higher points.

Example 1 (System ;). This example, from Cotterman [1, p. 8], has 6
alleles and 12 phenotypes. Cotterman was unable to determine whether this
system had a factor-union representation.

Figure 1 shows the Hasse diagram of Graph(®,) after the algorithm has
finished with stage 2. There are no cycles in it, so that the algorithm proceeds

CONDITIONS FOR PHENOTYPE SYSTEM 119

<ac,ae,ag,ah,bc,bg,dg,dh, fg>

<cg,ch,eg,gg,gh> <cd,cf,de> <be,bh, fh> <aa,ab,ad,af,bd>

<cc,ce> <eh,hh> <ef> <dd,df> <bb,bf>

<ee> <ff>

F1G. 1. The Hasse diagram of Graph(d)}l) after being processed by the algorithm.

to stage 4. Stage 5 lasts a short time, since the Arrow-Adding Rule cannot be
applied. Thus @, has a factor-union representation.

A factor-union representation with 12 factors can be constructed for @,
using Theorem 2. This representation will not be displayed since a represen-
tation using only 4 factors is produced in Section 4.

Example 2 (System ®,). This example also has 6 alleles. The phenotypes
are shown in Figure 2, which displays the results after the first stage of the
algorithm is completed. Graph(®,) does not have any cycles, and there are
many ways to apply the Arrow-Adding Rule. Theorem 2 shows that the
Arrow-Adding Rule can be applied to heterozygotes in any order. If, how-
ever, a factor-union representation does not exist, some sequences of hetero-
zygotes will produce a cycle faster than others. For this example, the
Arrow-Adding Rule will be applied to the heterozygotes gx, hx, hu, uy, and
ty in order. The intermediate steps are detailed below and the results shown
in Figure 3.

120 GEORGE MARKOWSKY

<gt,tx>
<xy> <uy> <ty>
<gx> <hx> <ux> <gh,gy,hy,yy> <gu> <ht,hu,tt,tu>
<xx> <gg> <hh> <uu>

FiG. 2. The Hasse diagram of Graph(®,) after the first stage of the algorithm.

Since (xx) and (gg) are both less than (xy), an arrow must be added
from (gx) to (xy). The arrow from (xx) to (xy) can now be removed,
since there is a path from (xx) to {xy) through (gx).

Since (xx) and (hh) are both less than (xy) and (g¢, tx), arrows must
be added from (hx) to (xy) and (gt, tx).

Since (hh) and (uu) are both less than (uwy), add an arrow from
(ht, hu, tt,tu) to {uy). Now the arrow from (uu) to (uy) can be removed,
since there is a path from (uu) to (uy) through (ht, hu, tt, tu).

Again, (#y) is greater than (uu) and (gh, gy, hy, yy), so an arrow is
added from (uy) to (ty). Since {(uy) is greater than (ht, hu,tt, tu) and
(gh, gy, hy, yy), we add an arrow from (zy) to {uy). This arrow combined
with the previous one creates a cycle involving the two phenotypes (ty) and
(uy). Thus ®, does not have a factor-union representation.

Based on the results just obtained, there is a direct way to show that @,
cannot have a factor-union representation. Suppose, to the contrary, that it
did have a factor-union representation f. Then the factors associated with

CONDITIONS FOR PHENOTYPE SYSTEM 121

<gt,tx>
<xXy> <uy> <ty>
<gx> <hx> <ux> <gh,gy,hy,yy> <gu> <ht,hu,tt,tu>
<xx> <gg> <hh> <uu>

Fi16. 3. The Hasse diagram of Graph(®,) when a cycle is first detected.

(uy) would be f(u)+ f(y). Similarly, the factors associated with (#y) would
be f(t)+ f(y). Since yy is in the same phenotype as gh, it would follow that
() =f()+ f(¥)=f(g)+ f(h). Similarly, since # is in the same phenotype
as hu, it follows that f(¢)= f(h)+ f(u). Thus f(t)+f(y)=f(h)+ f(u)+
f()+f(h) = f(u)+ f(g)+ f(h) = f(u)+ f(»). This is impossible, since dis-
tinct phenotypes must have distinct factor sets associated with them.

Theorem 1 is a version of Theorem 2.1 in Markowsky [1973], and contains
the basic facts about the representation of posets needed to prove that the
algorithm is correct. Theorem 2 gives the proof that the algorithm is correct.
For additional references and a more complete treatment of these ideas, see
Markowsky [1980].

THEOREM |

Let A be a poset and §: A — Power(A) a function given by the following
rule:

0(x)={yinA|yisnot > x}

122 GEORGE MARKOWSKY

The function @ has the following properties:

(1) Forall xandy in A,
x<y ifandonlyif 6(x)<6(y).

Thus distinct elements are mapped into distinct elements.
(2) Let S be a subset of A, and assume that S has a sup, s. Then

6(s)= Y 0(1).

tinS

Proof. If x <y, and tis not > x, then ¢ is not > y, since > is transitive.
Thus 6(x) is a subset of #(y). Suppose that #(x) is a subset of §(y). Further,
suppose y is not > x. Then y must be an element of §(x) and hence of 8(y).
But if y belongs to (y), then y is not > y, which is impossible. Thus y > x.

If s is the sup of §, then s> ¢ for all # in S. From the first part of this
theorem, it follows that 8(s) contains the union of the 8(#)’s, since it contains
each individual 8(¢). Now suppose that there exists an x which belongs to
#(s) but not to any 8(¢) where ¢ is an element of S. Thus x is not > s, but
x>t for all ¢ in S. Since s is the sup of §, it follows that x >s. This
contradicts the fact that x is not in 6(s). []

THEOREM 2

If the algorithm described above halts without finding a cycle, ® has a
factor-union representation. If a cycle is found, ® cannot have a factor-union
representation. Furthermore, the heterozygotes in stage 5 of the algorithm can
be chosen arbitrarily.

Proof. 1f ® has a factor-union representation f, it is impossible for the
algorithm to construct a cycle when processing Graph(®), since all the
arrows introduced by the algorithm correspond to set inclusions that hold in
any a factor-union representation.

If a cycle exists in Graph(®), at least two distinct phenotypes have the
same factor sets, contradicting the assumption that f was a factor-union
representation.

If the algorithm halts without finding a cycle, the relation < is a partial
order on Graph(®). Theorem 1 produces a representation # assigning subsets
of Graph(®) to each point in Graph(®).

For each allele a in @, let f(a) = 0({aa)). I claim that f is a factor-union
representation of ®. Note that 6({ab))=f(a)+ f(b), since the Arrow-
Adding Rule ensures that (ab) is the sup of (aa) and (bb) in Graph(®),
and the representation of Theorem 1 transforms sups into unions. If « is a
genotype, define f(a) to be the union of the factor sets of the alleles in the
genotype. It follows that f(«) = 8(P), where P is the phenotype containing a.

CONDITIONS FOR PHENOTYPE SYSTEM 123

Since @ maps distinct phenotypes into distinct subsets, f is a factor-union
representation of ®.

The order in which heterozygotes are considered in stage 4 is immaterial,
because either a phenotype system has a factor-union representation or it
doesn’t. If it does, it is impossible for the algorithm to find a cycle, since such
a cycle would imply the equality of two distinct phenotypes. Similarly, if a
system doesn’t have a factor-union representation, the algorithm must even-
tually discover a cycle, else a factor-union representation could be con-
structed for the system. []

4. THE SIZE OF A REPRESENTATION

Example 3 (System ®;). This example has 2k alleles: a,, a,,- - -,a, and
X1, Xp,° * *, Xy, and k? +2k + 1 phenotypes:

(D) {a;a;) fori=1,2,... (k of this type).
2) (x;x;) for i=1,2,... (k of this type).
(3) (a;x;) for i, j=1,2,... (k? of this type).

4) (a;a;,x;xj}i=jand i, j=1,2,....,k) (1 of this type).

I claim that any factor-union representation of ®; must have at least k?
factors in it. To see this, assume a factor-union representation f for @, has
been given. Let S be factor set of the phenotype (a,a,,...), and S, ; the
factor set of the phenotype (a,x;). Here i and j both range over 1,...,k.
Clearly, S, ;is a subset of S for all i and j. Let C; ; be S— S, ;. Each C, ; is
not empty, since each §; ; must be a proper subset of S.

I claim that the intersection of two distinct C; ;’s must be empty. If
(i,)= (i’, j’), then either i=i" or j= ;. In the first case, S; . +S; ;
contains S, since S = f(a;a;). The same result holds in the second case. Since
the union of S, ; and S; ;. is S, the intersection of C; ; and C; ; must be
empty. Thus the C; ;’s are a family of k? mutually disjoint, nonempty subsets
of S. This implies that S has at least k? factors.

®, has k?+2k + 1 phenotypes. As k increases, the minimum number of
factors necessary to represent it asymptotically approaches the number of
phenotypes, and is quadratic in the number of alleles.

The following theorem is useful for finding minimal factor-union repre-
sentations when the poset turns out to be a semilattice. It is an immediate
consequence of Proposition 2.6 in [2]. For additional details on this result see
(3]

THEOREM 3

Let A be a finite semilattice and x: A — Power(X) a function which is
injective (1-to-1), preserves order, and preserves sups. Then the number of
elements in X is > the number of elements of A that have exactly one element

124 GEORGE MARKOWSKY

covering them in the Hasse diagram of A. These elements are called meet-irre-
ducibles. Furthermore, if M is the set of all meet-irreducible elements in P, then
0: A —» Power(M) given by

6(x)={yinM|yisnot > x)

maps distinct elements into distinct elements, preserves order, and preserves
sups.

If Graph(®) is a semilattice such that in any factor-union representation
all sups correspond to unions, Theorem 3 shows how to easily find a
factor-union representation using the smallest possible number of factors.
Checking whether Graph(®) is a semilattice only requires that you check
that every pair of elements has an upper bound. Checking whether unions
would always correspond to sups is more involved, and is illustrated in the
following examples.

It is easy to check that Graph(®,) is a semilattice, with sups being unions.
For example, P = {cd, ¢f, de) and Q = (be, bh, fh) have R = (ac, ae,...,fg)
as a sup in the partial order constructed. In any factor-union representation f
of ®,, f(R) must contain the union of f(P) and f(Q). To apply Theorem 3,
it must be the union of f(P) and f(Q). This follows because f(R) = f(b)+
f(o), but f(PY+ f(Q) = f(c)+ f(d)+ f(b)+ f(e). The argument for all other
sups is similar. Thus any factor-union representation of ®, must be a
mapping of the type described in Theorem 3.

Graph(®,) has 4 meet-irreducible elements: (aa,...), {cg,...), {(be,...)
and (cd,...). Let these be represented by the symbols w, x, y, and z for
brevity. The 4-factor representation of @, derived from Theorem 3 is
illustrated in Figure 4.

The phenotypes corresponding to the meet-irreducible elements have both
a label (one of w, x, y, or z) and a factor set of labels. It is important to
distinguish between the two. The phenotype {cd, cf, de) has the label z, but
receives the factor set {w, x, y} because the other three meet-irreducible
elements, w, x, and y, are not greater than or equal to it. The phenotypes that
are not meet-irreducibles only have a factor set associated with them, so there
is no confusion.

Example 3 is analyzed similarly. The meet-irreducible elements turn out to
be the (a,x;)’s where i, j=1,2,...,k. Here Theorem 3 shows that k2 is a
possible number of factors for a factor-union representation and that it is
also the smallest possible number.

5. MULTILOCUS SYSTEMS

Finding factor-union representations for multilocus systems reduces in a
straightforward way to finding factor-union representations for 1-locus sys-

CONDITIONS FOR PHENOTYPE SYSTEM

{w,x,y,z}

<ac,ae,ag,ah,bc,bg,dg,dh, fg>

125

{w,y,z} {w,x,y} {w,x,2} {x,y,2}
/ \
<cg,ch,eg,gg,gh> <cd,cf,de> <be,bh, fh> <aa,ab,ad,af,bd>

<cc,ce> <eh,hh> <ef> <dd,df> <bb,bf>
{w} {x}
<ee> <ff>

F1G. 4. A 4-factor representation of @ .

tems. A computer is probably required for determining whether even small
multilocus systems have a factor-union representation.

DEFINITIONS AND NOTATION

(1) The conventions introduced earlier for alleles and phenotypes are still in
effect. A new notation, however, is required to represent genotypes. Thus
aa-be-dd represents an individual homozygous at the first and third loci
and heterozygous at the second locus. For simplicity, it will be assumed
that an allele can occur only at a particular locus. Because of this
assumption, distinct genotypes must have different sets of alleles.

(2) The genotype ab can be considered the union of aa and bb. Similarly,

126 GEORGE MARKOWSKY

ab-cd-ee can be considered the union of aa-cd-ee and bb-cd-ee. In general,

the union of two or more genotypes is possible if and only if there are no

more than two different alleles at each locus.

(3) In the remainder of this paper, the term homozygote will refer to a
genotype which is homozygous at each locus. The term heterozygote will
refer to a genotype which is heterozygous at some locus.

(4) Given a multilocus system ®, a 1-locus system, called the /-locus model of

® and denoted by Trans(®), can be derived from it as follows:

(a) The alleles of Trans(®) are derived from the homozygotes of @, ie.,
for each homozygote of ®, use a new symbol to represent an allele in
Trans(®). If a is a homozygote in @, let A(«) represent the corre-
sponding allele of Trans(®).

(b) Since each genotype a in @ can be written as the union of two
homozygotes and the union of any two homozygotes is possible,
every genotype in @ corresponds to some genotype in Trans(®). Any
such genotype is denoted by Trans(a). '

(¢) Define the phenotypes as follows. Trans(«) and Trans(B) are in the
same phenotype if and only if a and B are in the same phenotype in
®. For each phenotype P in ®, Trans(P) denotes the corresponding
phenotype in Trans(®). [In general, Trans(®) has more genotypes
than @, but the same number of phenotypes.]

(5) A factor-union representation for a multilocus system @ consists of a set of
factors and an assignment of subsets of factors to the alleles of ®, such
that the factor sets associated with all the genotypes within a given
phenotype are equal, and distinct phenotypes have distinct factor sets.
The factor set of a genotype is computed by taking the union of factor
sets associated with the alleles at each locus. This definition is essentially
the same as the definition for 1-locus systems.

Example 4. Let ® be a 2-locus system with two alleles at each locus.
Suppose the alleles at the first locus are w and x, while the alleles at the
second locus are y and z. ¢ has nine genotypes: four homozygotes and five
heterozygotes. Further, suppose each genotype of @ forms a distinct pheno-
type. To construct Trans(®), pick four new symbols corresponding to the
homozygotes of ®. I will use the following correspondence:

(ww-yy) > a, (ww-zz) b, (xx-yy)-—>c, {(xxzz)—d.

Trans(®) has ten genotypes and nine phenotypes. Each phenotype, except
for (ad, bc), contains just a single genotype. The phenotype (ad, bc) corre-
sponds to the phenotype {wx-yz) in ®.

THEOREM 4

Let ® be a multilocus system, and Trans(®) the 1-locus model of ®. Then ®
has a factor-union representation if and only if Trans(®) does.

CONDITIONS FOR PHENOTYPE SYSTEM 127

Proof. Suppose that ® has a factor-union representation. Let f be the
function that assigns sets of factors from a set S to the alleles in ®. The
factor-union representation of Trans(®) will use the same set S and a
function g similar to f. For each allele 4(a) in Trans(®), define

g(A(a))=f(a).

Since all unions in Trans(®) are derived from unions in @, it is easy to see
that we have constructed a factor-union representation for Trans(®).

Deriving a factor-union representation of ® from one of Trans(®) is more
involved, since none of the entities of Trans(®) correspond directly to the
alleles of ®.

Some additional concepts are needed to conclude the proof. If X is a set of
alleles of ®, let Hom(X) be the set of homozygotes that contain all the
elements in X. If X has more than one allele from the same locus, Hom(X)
will be empty. Now define

F(x)y= I1 _g(A(a)).

a in Hom (X)

I claim that if X, Y, and Z are sets of alleles of ® such that Z= X + Y and
Hom(Z) is nonempty,

F(Z)=F(X)+F(Y) *)

Since Hom(Z) is a subset of Hom(X) and Hom(Y), both of them are also
nonempty. Pick arbitrary x in X and v in Y. There is a ¢ in Hom(Z) and
another homozygote A such that { + A are the same genotype as x + v. For
brevity, use u to denote this genotype. Because g is a factor-union representa-
tion,

g(4(8)) < g(4(p)) = g(4(x))+8(4(v))
Furthermore,
F(Z)<g(4(8)).
Thus
F(Z) <g(A(x))+g(4(v))

for all x in X and v in Y. By fixing x, letting v vary through all of Y, and
taking the intersection of all terms, we get

F(Z)<g(A(x)+F(Y).

Now by letting x vary through all of X and taking the intersection of all

128 GEORGE MARKOWSKY

terms produced, we get
F(Z)< F(X)+F(Y)

Since F(Z) is > F(X) and F(Y), we have F(Z)> F(X)+ F(Y). Conse-
quently, (*) follows.
For each allele a in ¢ define

f(a)=F({a}).

Let Alleles(a) be the set of all alleles in the homozygote a. By induction and
(*) it follows that

F(Alleles(a))= Y. f(a).

aina
But

Hom(Alleles(a)) = {a),
$0

F(Alleles(a)) = g(A4(a)).

This means that the “factor sets” assigned to the alleles by f are such that
when the appropriate unions are taken, each homozygote receives the same
set of factors g assigns to its image in Trans(®). Because heterozygotes are
unions of homozygotes, it follows that f is a factor-union representation of ®.

|

I gratefully thank Dr. Kenneth Lange for introducing me to this problem,
supplying me with various references, and some very helpful comments on an
early draft of this paper. I would also like to thank Dr. Joshua Lederburg for an
interesting discussion that led to my cleaning up the section on multilocus
systems. At a seminar where I presented these results he indicated that my
reduction of 2-locus systems should also hold for multilocus systems. I thought
the matter through and produced the proof that this is correct. Finally, I would
like to thank the referee for making some suggestions that improved the
exposition of the paper.

REFERENCES

1 C. W. Cotterman Factor-union phenotype systems, in Computer Applications in Genetics
(N. E. Morton, Ed.), Univ. of Hawaii Press 1969, 1-19.

2 G. Markowsky, Combinatorial aspects of lattice theory with applications to the enumer-
ation of free distributive lattices, Ph.D thesis, Harvard Univ., 1973.

3 G. Markowsky, The representation of posets and lattices by sets, Algebra Universalis
11:173-192 (1980).

