
1

Bit Operations

And Sign Extension

Topics
• Bitwise Boolean Operations
• Shift and Rotate
• Writing Branch-Free Code
• Bit Operations in C/C++/Java
• Counting Bits

Sign Extension Instructions
• Four instructions with implied accumulator operands:

CBW - Convert Byte to word (al -> ax)
CWD - Convert Word to Dword (AX -> DX:AX)
CWDE - Convert Word to DWord Extended (ax -> eax)
CDQ - Convert DWord to Qword (eax -> edx:eax)

• Convert Byte to Word (CBW)
• Syntax:

CBW

• Semantics:
AX <- AL sign extended
Flags ODITSZAPC unchanged

CWD and CWDE
• Convert Word to Double Word CWD
• Syntax:

CWD

• Semantics:
DX:AX <- AX sign extended
Flags: ODITSZAPC unchanged

• Convert Word to Double word Extended (cwde)
• Syntax:

cwde

• Semantics:
eax <- AX sign extended
Flags: ODITSZAPC unchanged

CDQ
• Convert Double word to Quad Word
• Syntax:

cdq

• Semantics:
edx:eax <- eax sign extended
Flags: ODITSZAPC unchanged

• Note that all of these instructions use the accumulator
as an implied operand (including dx and/or edx)

• With the 386 processor two more general instructions
were added:
movsx Move with sign-extension
movzx Move with zero-extension

MOVSX and MOVZX
• Syntax:

MOVSX dest, source
MOVZX dest, source

• Semantics:
MOVSX sign-extends source into destination
MOVZX zero-extends source into destination
Flags: ODITSZAPC unchanged

• Operands: - note that dest is ALWAYS a register
reg16, reg8 or mem8
reg32, reg8 or mem8
reg32, reg16 or mem16

2

Operation on the Carry Flag
• The Carry Flag (CF) is one of three flags with

instructions for direct modifications
The other two are status flags: Direction Flag DF and Interrupt
Enable flag ID

• CF is used extensively in multiword arithmetic and
with instructions that work with individual bits

• CF operations are Clear Carry (CLC) , Set Carry
(STC) and Complement Carry (CMC)
CLC Syntax: CLC Semantics: CF <- 0
STC Syntax: STC Semantics: CF <- 1
CMC Syntax: CMC Semantics: CF <- CF-1

Shifts and Rotates
• Many high level languages provide shift operators, but

none (to my knowledge) provide rotate operators
Shifting shifts bits in an operand from left to right or from right
to left
Rotates rotate bits in an operand from left to right or from right
to left

• In all of the curly brace languages (C, C++, Java,
Javascript) << and >> are shift left and shift right,
respectively

Shifts can be LOGICAL (zero-fill) or ARITHMETIC (sign-
preserving)
C and C++ support signed and unsigned arithmetic and shift
operators behave accordingly
Java and Javascript do not support unsigned arithmetic so all
shifts are sign-preserving

Shifting and Multiplication / Division
• In general shifting bits corresponds to multiplication

(left shift) or division (right shift) by a power of 2.
Arithmetic right shift preserves the top-order bit so that the
result is mathematically correct for signed integers.
A logical right shift does not preserve the top-order bit, so the
result is correct for unsigned integers

• Although x86 assembly has mnemonics for both
logical (SHL) and arithmetic left shifts (SAL) they are
in fact the same instruction

• Note that shifting left to multiply by powers of two only
is correct if:

-for integers with 0’s in high order bits, the H.O. bit remains 0
-for signed negative integers, the H.O. bit remains 1

Shift Instructions
• SAL Destination, Count (shift arithmetic left)
• SHL Destination, Count (shift logical left)

• SAR Destination, Count (shift arithmetic right)
• SHR Destination, Count (shift logical right)

• In 32-bit processors an additional (and somewhat
unusual 3-operand shift is available):

shrd dest, source, count
shld dest, source, count

SAL and SHL
• These two instructions are identical and operate on

registers or memory
SAL stands for Shift Arithmetical Left and SHL stands for SHift
logical Left--This operation corresponds to multiplication by 2
This works for both signed and unsigned numbers--provided
the signed result is in range
Often used for high-speed multiplication

• Left shift follows the pattern below

Effects on Flags
• Effects on flags
if (count == 1)

....SZ.PC modified for result
O........ O set if CF != new MSB
......A.. Undefined
.DIT..... Unchanged

else
........C modified for result
O...SZAP. Undefined
.DIT..... Unchanged

3

Syntax
• SAL and SHL have three syntactic versions
• SAL Mem/Reg, 1

The immediate value 1 is not actually part of the instruction
• SAL Mem/Reg, CL

Note the use of the CL register as shift counter
• SAL Mem/Reg, imm (80186 and later)

Not the same machine language as SAL mem/reg 1

Uses
• Shifting has many uses: bit inspection (inspect CF),

fast arithmetic, pack bytes into nibbles, etc.
• Packing bytes:

shl ah, 4 ; move l.o. 4 bits to upper nibble
or al, ah ; merge into AL

• Fast arithmetic: what is the common English term for
this operation?
mov eax, number ; 2 clocks if n in cache
sal eax, 2 ; 1 clock
add eax, number ; 1 clock
sal eax, 1 ; 1 clock

• Note that MUL is 70-150 clocks on the 8086 and still
10 clocks on the Pentium

SAR and SHR
• SAR AND SHR

Shift Arithmetic Right and SHift logical Right
Unlike SAL and SHL, these two instructions are different

• Syntax same as SAL/SHL:
SAR Dest, 1 SHR Dest, 1
SAR Dest, CL SHR Dest, CL
SAR Dest, immed SHR Dest, immed

• SAR preserves the sign of the number by keeping the
high-order bit unchanged.

SAR and SHR

•Same effect on flags as SHL/SAL
If shifting by 1 OF will reflect a sign change.
CF, ZF, PF and SF are affected by shifts of 1 bit

•Note that with a shift of 1 CF has the remainder after
division by 2

Rotates
• Rotates are circular shifts, but they are not used for

mathematical purposes
• Rotates can either be left or right, with or without the

carry flag
RCL Destination, Count
ROL Destination, Count
RCR Destination, Count
ROR Destination, Count

• Like the shifts you can either rotate by 1 or by using
the CL register

ROL and RCL
• The only flags affected are CF and OF
• The changes to CF will be seen below, while OF is 1 if the new

high-order bit is different from the old.
The figures below illustrate these operations.

• Unlike a shift instruction bits are never lost.
• Note that ROL is an 8, 16, or 32 bit rotate and RCL is a 9, 17 or

33 bit rotate
• Using ROL to exchange nibbles:

rol al,4
• or words:

rol eax, 16 ; now h.o. word is in AX

4

ROR and RCR
• Like ROL and RCL except the direction is different.

SHLD and SHRD (80386+)
• Syntax

SHLD dest, source, count
SHRD dest, source, count

• Semantics
dest shifted L/R by count and filled from source
SHLD: bits are copied from MSBs of source
SHRD: bits are copied from LSBs of souce
source unmodified
Flags:

S,Z modified for result
O,A,P,C undefined

• Operands
reg, reg, imm mem, reg, imm
reg, reg, CL mem, reg, CL

Shift and Rotate Examples
• Multi-word shifts

• Displaying characters in binary

• Isolate bit fields

Displaying Characters in Binary
AsciiBinary:
; parameters AL byte to convert
; ebx pointer to 8-byte string for result
; returns all registers unmodified
push ebx
push ecx
mov ecx, 8

L1:
mov byte [ebx], '0' ; assume zero bit
rol al, 1 ; get msb first
adc byte [ebx],0 ; add in carry
inc ebx
loop L1
pop ecx
pop ebx
ret

Example Call
foo db 0
asc TIMES 9 db 0 ; 8 bytes for ascii + 0
terminator
...
mov al, [foo] ; load byte
mov ebx, asc ; string addr in ebx
call asciibinary
mov eax, asc
call print_string

Multibyte Shifts
segment .bss
bigdata resd 4 ; 128 bit integer

…
; we’ll shift bigdata left by 4,
discarding h.o. bits
; note little-endian ordering of dwords
mov ecx, 4 ; loop counter

shift_loop:
shl [bigdata],1 ; msb in cf
rcl [bigdata+4] ; msb of dword[0] in
lsb dword[1]
rcl [bigdata+8] ; msb of dword[1] in
lsb dword[2]
rcl [bigdata+12] ; msb of dword[2] in

5

Isolate Bit Fields
• A FAT filing system directory timestamp is a 16-bit

structure:
y y y y y y y m m m m d d d d d

• Where
Year is 7 bits (0 = 1980, 1=1981, etc)
Month is 4 bits
Day is 5 bits

• Example: July 4, 2000 = F0D4h
1111000011100100
Y= 111 1000 M = 0111 D = 00100
= 120+1980 = July = 4

Bit Fields
year dw ?
month db ?
day db ?
timestamp dw ?

; get day
mov ax, timestamp
and al, 1fh ; mask off all but lower 5 bits
mov day, al
mov ax, timestamp
shr ax, 5 ; shift month to low order bits
and al, 0Fh ; and mask
mov month, al
mov ax, timestamp
mov al, ah ; copy year to low byte
shr al, 1 ; shift to correct position
sub ah, ah ; zero out ah
add ax, 1980 ; add the beginning of the world
mov year, ax

ADC and SBB
• We’ve discussed these before and indicated their use

in signed multiple precision arithmetic
• A straight binary add has a carry from bit to bit
• All we need to to generalize is to propagate the carry

between bytes or words
• We can easily extended addition and subtraction to

binary integers of any length

Generalized Multiword Addition
Multiword_Add:
; Parameters: ecx: operand size in dwords
; esi, edi: address of source operands
; ebx:address of result. ecx+1 words in length
pusha ; we use 5 registers, save all
clc ; ensure cf clear for carries

L1:
mov eax, [edi] ; get first operand
adc eax, [esi] ; add second operand with prev carry
mov [ebx], eax ; save result
pushf ; save cf
add di, 4 ; advance all 3 pointers
add si, 4
add bx, 4
popf ; restore cf
loop L1
; may have carry left over
mov dword [ebx], 0 ; clear msb
adc dword [ebx], 0 ; add in carry
popa
ret

Example Call
segment .data
op1 dd 12345678h, 5ABBCCDDh, 09080706h
op2 dd 83756567h, 17173545h, 33221155h

segment .bss
ans resd 4

mov edi, op1
mov esi, op2
mov ecx, 3
mov bx, ans
call multiword_add

Counting Set Bits in a Register
• Consider this code
; Count the number of bits that are set in eax
sub bl, bl ; bl will contain the count of ON bits
mov ecx, 32 ; ecx is the loop counter
count_loop:
shl eax, 1 ; shift bit into carry flag
jnc skip_inc ; if CF == 0, goto skip_inc
inc bl

skip_inc:
loop count_loop

• We can simplify (and preserve eax)
sub bl, bl ; bl will contain the count of ON bits
mov ecx, 32 ; ecx is the loop counter
count_loop:
rol eax, 1 ; shift bit into carry flag
adc bl,0

Loop count_loop

6

AND
• Syntax:

AND dest, source

• Semantics:
dest <- dest AND source
flags:SZ.P modified for result

O......C cleared
......A. undefined
.DIT.... unchanged

• Operands:
reg,reg mem,reg reg,mem
reg,immed mem,immed

AND
• Used for clearing individual bits in an operand

(masking)
• Put a 0 in each bit position that you want to clear
• Example: Convert ASCII digit in AL to binary number:

AND AL, CFh ;1100 1111b
• Note the effects on the flags

flags:SZ.P modified for result
O......C cleared
......A. undefined
.DIT.... unchanged

• S, Z, P carry useful information
• O C are cleared always, so carry no information

TEST
• Syntax:

TEST dest, source
• Semantics:

compute (dest AND source) and modify flags
flags:SZ.P modified for result

O......C cleared
......A. undefined
.DIT.... unchanged

• Operands:
reg,reg mem,reg reg,mem
reg,immed mem,immed

• TEST is an AND operation that modifies flags only and
does not affect the destination

• TEST / AND is like CMP / SUB
• Typically used with conditional jumps

OR
• Syntax:

OR dest,source
• Semantics:

dest <- dest OR source
flags:SZ.P modified for result

O......C cleared
......A. undefined
.DIT.... unchanged

• Operands:
reg,reg mem,reg reg,mem
reg,immed mem,immed

• Notes:
Used for setting individual bits in an operand (masking)
Put a 1 in each bit position that you want to set
With AND we mask with 0's; with OR we mask with 1's
This is the conventional inclusive OR

XOR
• XOR is eXclusive OR
• Compare truth tables:

OR T F XOR T F
T T T T F T
F T F F T F

• Syntax:
XOR dest, source

• Semantics:
dest <- dest XOR source
flags:SZ.P modified for result

O......C cleared
......A. undefined
.DIT.... unchanged

• Operands:
reg,reg mem,reg reg,mem
reg,immed mem,immed

XOR
• Used to complement bits
• Create a mask that has a 1 in each position to be

complemented and a 0 in each position to be left
unchanged

1011 1100
XOR 0110 0110

1101 1010

• Can be used to clear a register: XOR AX,AX
Same effect and speed as subtraction: SUB AX,AX
But either is faster than MOV AX,0

• XOR over a word computes an even parity bit
1011 1100

• This word has 5 1-bits, so the XOR is 1

7

XOR and Messages
• XOR has some interesting properties that make it very

useful with cryptography
• (A xor B) xor A = B

1011 1100 A
XOR 0110 0110 B
= 1101 1010
XOR 1011 1100 A
= 0110 0110 B

• So if A is a message, and B is a secret key, A xor B is
an encrypted message and (A xor B) xor A is the
decrypted message

Steganography
• Steganography is the hiding of a message inside

another object in such a way that the presence of the
message is imperceptible

• XOR can be used to encode messages into innocuous
digital objects such as bitmaps or sound files

A bitmap has 3 color channels plus an alpha channel (used for
opacity)
Changes to the low order bit of color channels are not readily
detectable by the human eye
A message can be hidden by xoring the message with the low
order bits of color bytes

• Off-topic: but interesting: many color printer
manufacturers now encode steganographic printer
identification data in tiny yellow dots that are invisible to
the human eye

See http://w2.eff.org/Privacy/printers/docucolor/

Other uses of Boolean Ops
• Sometimes Boolean operators are used for purposes

other than modifying or inspecting bits
• With a value in a register

and reg, reg OR or reg, reg OR test reg, reg

• Will set PSZ flags that can tested with a conditional
jump. Operand is not modified

• XOR can be used in place of NOT
xor ax, 0ffffh

• This can be useful because xor modifies PSZ flags but
NOT does not

• XOR reg, reg sets reg to 0, same as SUB reg, reg

NOT
• Used to logically negate or complement an operand
• Same effect can be achieved with XOR but if the entire

operand has to be complemented then NOT is faster
• Syntax:

NOT dest

• Semantics:
dest <- NOT dest
Flags: ODITSZAPC unchanged

• Operands:
reg mem

• Notes:
1. NOT is a unary operation
2. NOT is logical negation (1's complement); every bit is inverted;

NEG is the two's complement negation
3. Unlike other boolean operations NOT has no effect on the

flags

Conditional SETcc Instructions
• These instructions were added to the 80386 instruction

set for a number of reasons but they can be quite useful
in avoiding branch instructions and therefore pipeline
stalls

• The conditional SETs take a single byte destination
operand and write a 1 to the operand if condition is true,
0 if false.

• SETcc Conditions are same as conditional jump
• Note that

SETcc AL
DEC AL
Leaves AL with all 1’s or all 0’s

SETcc
• (SETcc) instructions:

seta, setae, setb, setbe, setc, sete, setg, setge, setl, setle,setna,
setnae, setnb, setnbe, setnc, setne, setng, setnge, setnl, setnle,
setno, setnp, setns, setnz, seto, setp, setpe, setpo, sets, setz

• Syntax:
SETcc dest

• Semantics:
dest <- 1 if condition true, 0 otherwise (See Jcc)

• Flags:
ODITSZAPC unchanged

• Operands:
reg8 mem8

http://w2.eff.org/Privacy/printers/docucolor/

8

Find MAX Without Branches
%include "asm_io.inc"
segment .data
message1 db "Enter a number: ",0
message2 db "Enter another number: ", 0
message3 db "The larger number is: ", 0
segment .bss
input1 resd 1 ; first number entered

segment .text
global _asm_main

_asm_main:
enter 0,0 ; setup routine
pusha
mov eax, message1 ; print out first message
call print_string
call read_int ; input first number
mov [input1], eax

mov eax, message2 ; print out second message
call print_string
call read_int ; second number (in eax)

max.asm:2
xor ebx, ebx ; ebx = 0
cmp eax,[input1] ; compare second and first number
setg bl ; ebx= (input2 > input1) ? 1 : 0
neg ebx ; ebx= (input2 > input1) ? 0xFFFFFFFF : 0
mov ecx, ebx ; ecx= (input2 > input1) ? 0xFFFFFFFF : 0
and ecx, eax ; ecx= (input2 > input1) ? input2 : 0
not ebx ; ebx= (input2 > input1) ? 0 : 0xFFFFFFFF
and ebx,[input1] ; ebx= (input2 > input1) ? 0 : input1
or ecx, ebx ; ecx= (input2 > input1) ? input2 : input1

Bit Test Instructions
• A set of four instructions that test a single, specified bit

in register or memory and copy it to CF
• BT (Bit Test)

Test a specified bit by copying it to CF
• BTS (Bit Test and Set)

BTS will also set the bit after it is copied
• BTR (Bit Test and Reset)

BTR will clear (reset) the bit after it is copied
• BTC (Bit Test and Complement)

BTC will complement the bit after it is copied

BT, BTS, BTR, BTC
Syntax:
BT dest, source BTR dest, source
BTS dest, source BTC dest, source

Semantics:
CF <- bit in dest specified by source;
dest modified by BTS, BTR, BTC as specified above

Flags:
.........C gets copy of bit from dest
ODITSZAP. unchanged

Operands:
reg, reg mem, reg
reg, imm8 reg, imm8

