
1

Linkage with C and C++

Object Files
Names and Visibility
Calling Conventions

Object Files
• Object files (Windows .obj, Linux .o) are an

intermediate form of machine code that is not
executable

These are inputs to a linker which links multiple modules into one
executable program

• Object Files contain unresolved references to procedures
or data located in other modules

When developing a program as a set of independent modules, all
offsets in a segment are relative to the segment registers of that
module
When several modules are combined the offsets have to be
adjusted whenever segments are shared

Language Independent
• Object files are where the language disappears

The basic idea of object files is to allow programmers to write
and assemble (or compile) individual pieces of programs and
then to link them together to make the final program.

• For most languages you can work without ever being
aware of the existence or presence of object files

• When building mixed-language programs the each
language is used to create one or more object files
which are then linked into a single executable

• This scheme permits you to mix "modules" written in
different languages as long as you follow the proper
rules of design and visibility of names.

Sharing Names
• Names or symbols are the “links” by which code in

one object file refers to data or code in another
object file

• Names can be public (published in the object file) or
local

• Global or Public directives cause names to made
available in the object file

• To refer to a name defined elsewhere, an extern
directive is needed

Two Sides of the Same Coin
• The extern directive tells the compiler/assembler that a

name is defined elsewhere. The cctual spelling of “extern" may
vary

C extern
Pascal external
MASM EXTRN
NASM extern

• A Global (NASM) or PUBLIC (MASM) directive is used in a module
whose names will be referenced by other module

Causes names to be exported to the obj file in a PUBDEF record
(Public Names Definition Record)
These directive are pretty much peculiar to assembler

• All HLLs however support some syntactic mechanism by which
public names can be exported to the .obj file

main4:1
%include "asm_io.inc"
segment .data
sum dd 0

segment .bss
input resd 1

segment .text
global _asm_main
global _asm_main
extern get_int, print_sum

_asm_main:
enter 0,0 ; setup routine
pusha

2

sub4:1
%include "asm_io.inc“
segment .data
prompt db ") Enter an integer (0 to
quit): ", 0

segment .bss
segment .text
global get_int, print_sum

sub4:2
; get_int – prompt and read integer
; Parameters (in order pushed on stack)
; number of input (at [ebp + 12])
; address of word to store input into (at [ebp + 8])
segment .data
prompt db ") Enter an integer (0 to quit): ", 0
segment .text
get_int:
push ebp
mov ebp, esp
mov eax, [ebp + 12]
call print_int
mov eax, prompt
call print_string
call read_int
mov ebx, [ebp + 8]
mov [ebx], eax ; store input into memory
pop ebp
ret

sub4:3
; print_sum
; Parameter:
; sum to print out (at [ebp+8])
; Note: destroys value of eax
segment .data
result db "The sum is ", 0

segment .text
print_sum:
push ebp
mov ebp, esp
mov eax, result
call print_string

mov eax, [ebp+8]
call print_int
call print_nl
pop ebp
ret

Interfacing Assembler with C
• In the following example we have
• foo.c

A C program that declares a global variable int foo
The C program calls a function bar, written in assembler, that

modifies foo
The C program also refers a variable dvar defined in

assembler

• Bar.asm
The assembler program refers to a variable foo defined in the

C program
It defines a variable called dvar that is accessed from C
It defines a function void bar(void) that refers to the global

variable foo

The C side of the coin

void bar(void); /* resolved by linker */
int foo;
extern int dvar; /* dvar is defined elsewhere */
/* foo is public because it is a global variable */
int main () {

foo = 1;
bar();
printf("\nValue of foo = %i", foo);
dvar *= foo + 1;
printf("\nValue of dvar = %i", dvar);
return 0;

}

The asm side of the coin
extern _foo ; foo is defined elsewhere
global _bar, _dvar
segment .data
_dvar dd 123
segment .text
_bar:
inc dword [_foo]
ret

• Assemble and run
nasm -fwin32 bar.asm
cl foo.c bar.obj
foo

• Output
Value of foo = 2
Value of dvar = 369

3

Variations on a Theme
• Using the stack we don’t have to make names visible

across modules

segment .text
global _bar2
%define fooptr dword [ebp+8]
_bar2:
push ebp ; set up stack frame
mov ebp, esp
mov eax, fooptr ; get reference var
inc dword [eax] ; compute with it
mov eax, [eax] ; return value in eax
pop ebp
ret

Variations on a Theme
• Here we pass a local (automatic) variable

int bar2(int*); /* bar is defined elsewhere */
int main () {
int foo, foo2;
foo = 41;
foo2 = bar2(&foo);
printf("Value of foo2 = %i", foo2);
return 0;

}

Using ESP
• If we don’t use the stack we don’t need a stack

frame

segment .text
global _bar2
%define fooptr dword [esp+4]
_bar2:
mov eax, fooptr ; get reference var
inc dword [eax] ; compute with it
mov eax, [eax] ; return value in eax
ret

Calling Conventions
• Calling conventions specify a number of items

1. How are parameters passed to a function?
2. Are parameters passed left to right or vice versa
3. Who cleans up the stack?
4. How are results from value-returning functions returned?
5. What registers need to be preserved by a function?
6. How are names decorated or mangled?
7. Are names case-sensitive?

• Calling conventions are compiler and OS-specific
• We will discuss a few fairly general Windows

conventions and then look at cdecl in Linux gcc

Parameter Order
• When calling func(a,b,x) we can push left-to-right or

right-to-left
• Left to right Right-to-left

Caller's ebpEBPCaller's ebp

Return eipEBP+4Return eip

aEBP+8x

bEBP+12b

xEBP+16a

Parameter Order
• Many languages use left-to-right parameter pushing

But many languages that allows variable length parameter
lists OR optional parameters uses right to left pushing (“right
pusher”)

In particular C and C++ are right-pushers

Note that right pushing always leaves the leftmost (and
known parameters) at known offsets from the base pointer

4

Stack Cleanup
• Most languages clean up the stack before returning by

using the RET imm instruction

• C/C++ as usual are the exceptions:
The CALLER will clean up parameters the stack by using an ADD
ESP, n instruction after the function call

• Again note that stack cleanup MUST be done by the
caller if variable length parameter lists are permitted

Some languages handle variable length parameter lists using a
“param array” – a pointer to a dynamic array of parameters

Returning Values from Functions
• Function return values for simple types are almost

universal:
bytes AL
words AX
dwords EAX (or DX:AX in 16 bits)
qwords EDX:EAX
floats ST(0) [top of x87 register stack]

• Note that the issue is not so much type as size
Both ints and pointers are returned in EAX

• For sizes other than those listed above, functions
either

(A) return a pointer to a data structure
OR

(B) return a data structure on the stack.

• Usually small values less than 32 bits are zero or sign
extended into eax

Preserving Registers
• The issue of which registers are to be preserved is

very much compiler – specific
• Compilers follow such conventions internally and

expect externally-defined functions to do the same
• Conventions vary between compilers even in the

same language
To be language-independent you can preserve all registers
except for EAX

• Failure to preserve registers can lead to crashes or
even worse -- programs that behave incorrectly
without crashing

Name Decoration and Mangling
• Many compilers add characters to names in their

internal symbol tables
• When the characters are uniformly applied to all

names, we call it “decoration”/
Most C compilers add a leading underscore (more to follow)…

• C++ compilers allow function overloading, where the
same function name is used for several
implementations that may differ in the type or order
of their parameters and/or return types

• These compilers add parameter type and order
information to the names in the symbol table. This
process is called “name mangling”

Name Mangling Example
• Create dummy C++ programs with empty functions:
void test() {
}
void test(int) {
}
void test(float,double) {
}

• And compiler to assembler code
-S most C and C++ compilers
-FAs Microsoft C and C++

Output from cl.exe
PUBLIC?test@@YAXXZ ; test
?test@@YAXXZ PROC NEAR ; test
pushebp
mov ebp, esp
pop ebp
ret 0

?test@@YAXXZ ENDP ; test

PUBLIC?test@@YAXH@Z ; test
?test@@YAXH@Z PROC NEAR ; test
pushebp
mov ebp, esp
pop ebp
ret 0

?test@@YAXH@Z ENDP ; test

PUBLIC?test@@YAXMN@Z ; test
?test@@YAXMN@Z PROC NEAR ; test
pushebp
mov ebp, esp
pop ebp
ret 0

?test@@YAXMN@Z ENDP ; test

5

Output from Borland C++
@@test$qv proc near
?live16385@0: ; void test() {
push ebp
mov ebp,esp
pop ebp
ret

@@test$qv endp ; }
@@test$qi proc near
?live16386@0: ; void test(int) {
push ebp
mov ebp,esp
pop ebp
ret ; }

@@test$qi endp
@@test$qfd proc near
?live16387@0: ; void test(float,double) {
push ebp
mov ebp,esp
pop ebp
ret ; }

@@test$qfd endp

More Examples

W?h$n()vW?h$n(ia)vW?h$n(i)vWatcom C++ 10.6

__7h__Fv__7h__Fic__7h__FiTru64 C++ V6.5 ANSI

h__Xvh__Xich__XiTru64 C++ V6.5 ARM

__1cBh6F_v___1cBh6Fic_v___1cBh6Fi_v_SunPro CC

CXX$_Z1HV0BCA19
V

CXX$_Z1HIC2NP3LI
4

CXX$_Z1HI2DSQ2
6AOpenVMS C++ X7.1 IA-64

CXX$__7H__FV2CB
06E8

CXX$__7H__FIC26C
DH77

CXX$__7H__FI0A
RG51TOpenVMS C++V6.5 ANSI

H__XVH__XICH__XIOpenVMS C++ V6.5 (ARM)

@h$qv@h$qizc@h$qiBorland C++ v3.1
?h@@YAXXZ?h@@YAXHD@Z?h@@YAXH@ZDigital Mars C++

h__Fvh__Fich__FiHP aC++ A.03.45 PA-RISC

h__Fvh__Fich__FiGCC 2.9x

_Z1hv_Z1hic_Z1hiGCC 3.x and 4.x

_Z1hv_Z1hic_Z1hiHP aC++ A.05.55 IA-64

_Z1hv_Z1hic_Z1hiIntel C++ 8.0 for Linux

void h(void)void h(int,
char)void h(int)Compiler

Name Decoration
• This term is sometimes used as a synonym for name

mangling
• Here we use it to refer to the decoration of names

with various symbols depending on calling convention
• Name decoration is OS and compiler specific

Calling Conventions

Pushed on stack; this pointer stored in ECXCallee__thiscall

Stored in registers, then pushed on stackCallee__fastcall

Pushes parameters on the stack, in reverse order (right to
left)Callee__stdcall

Load parameters onto CLR expression stack in order (left to
right).n/a__clrcall

Pushes parameters on the stack, in reverse order (right to
left)Caller__cdecl

Parameter passing
Stack

cleanupKeyword

• Calling conventions specify stack cleanup convention,
order in which parameters are pushed, and how names
are decorated

• These are from MS Visual Studio C++

Associated Name Decoration
• The calling convention also determines how names are

decorated internally
• From MS Visual Studio C++

@h@4
int _fastcall h (int z) { return 0; }

_g@4
int _stdcall g (int y) { return 0; }

_f
int _cdecl f (int x) { return 0; }

How to Avoid Name Mangling
• In C++You can use the "extern" directive to specify

the __cdecl calling convention and thereby avoid C++
name mangling

extern "C" int add (int *a, int b);
• OR
extern "C" {

int add (int *a, int b);
int sub (int *a, int b);

}

6

cdecl and Linux gcc (elf format)
• Unfortunately gcc does not decorate names with an

underscore when elf (Executable and Linkable
Format) object files are the target output format

A Program Skeleton (gcc)
; file: skel.asm
; This file is a skeleton that can be used to start asm programs.
%include "asm_io.inc"
segment .data
; initialized data is put in the data segment here
;
segment .bss
;
; uninitialized data is put in the bss segment
;
segment .text

global asm_main
asm_main:

enter 0,0 ; setup routine
pusha

; code is put here in the text segment. Do not modify the code
; before or after this comment.
;

popa
mov eax, 0 ; return back to C
leave
ret

A Program Skeleton (not gcc)
; file: skel.asm
; This file is a skeleton that can be used to start asm programs.
%include "asm_io.inc"
segment .data
; initialized data is put in the data segment here
;
segment .bss
;
; uninitialized data is put in the bss segment
;
segment .text

global _asm_main
_asm_main:

enter 0,0 ; setup routine
pusha

; code is put here in the text segment. Do not modify the code
; before or after this comment.
;

popa
mov eax, 0 ; return back to C
leave
ret

Saving Registers
• Tends to be compiler specific, but here are some

general guidelines:
1. Segment registers CS, DS, ES, SS must be preserved

(return from asm unmodified)
2. ebx, esi, edi and ebp must be preserved

epb of of course is the frame pointer
ebx, esi and edi are used for register variables

3. The accumulator eax is used for function results
4. Otherwise a program can modify ecx and edx

Compiling C/C++ to Assembler
• Nearly all C/C++ compilers will produce assembler

listings
• This can be handy for a number of reasons:

segment directives
calling conventions
naming conventions
parameter passing conventions
function return values

• Compile the main module of the C++ program with -S
or /FAs option.

Microsoft Visual C++:
cl /FAs foo.c ==> foo.asm

Borland C++
bcc32 -S foo.c ==> foo.asm

gcc (AT&T GAS assembler)
gcc -S foo.c ==> foo.s

Example: main5.c
#include <stdio.h>

#include "cdecl.h"

void PRE_CDECL calc_sum(int, int *) POST_CDECL;
/* prototype for assembly routine */

int main(void) {
int n, sum;

printf("Sum integers up to: ");
scanf("%d", &n);
calc_sum(n, &sum);
printf("Sum is %d\n", sum);
return 0;

}

7

sub5.asm:1
%include "asm_io.inc"
; subroutine _calc_sum
; finds the sum of the integers 1 through n
; Parameters:
; n - what to sum up to (at [ebp + 8])
; sump - pointer to int to store sum into (at
[ebp+12])

; pseudo C code:
; void calc_sum(int n, int * sump) {
; int i, sum = 0;
; for(i=1; i <= n; i++)
; sum += i;
; *sump = sum;
; }
segment .text

global _calc_sum
;
; local variable:
; sum at [ebp-4]

sub5.asm:2
_calc_sum:
push ebp
mov ebp, esp
sub esb, 4
push ebx ; IMPORTANT! Save for C

mov dword [ebp-4],0 ; sum = 0
dump_stack 1, 2, 4 ; print out stack

; from ebp-8 to ebp+16
mov ecx, 1 ; ecx is i in pseudocode

sub5.asm:3
for_loop:
cmp ecx, [ebp+8] ; cmp i and n
jnle end_for ; if not i <= n, quit
add [ebp-4], ecx ; sum += i
inc ecx
jmp short for_loop

end_for:
mov ebx, [ebp+12] ; ebx = sump
mov eax, [ebp-4] ; eax = sum
mov [ebx], eax
pop ebx ; restore ebx
mov esp, ebp
pop ebp
ret

Example: main6.c
#include <stdio.h>

#include "cdecl.h"

int PRE_CDECL calc_sum(int) POST_CDECL;
/* prototype for assembly routine */

int main(void) {
int n, sum;
printf("Sum integers up to: ");
scanf("%d", &n);
sum = calc_sum(n);
printf("Sum is %d\n", sum);
return 0;

}

sub6.asm:1
segment .text
global _calc_sum

;
; local variable:
; sum at [ebp-4]
_calc_sum:
push ebp
mov ebp, esp
sub esb, 4

mov dword [ebp-4],0 ; sum = 0
mov ecx, 1 ; ecx is i in pseudocode

sub6.asm:2
for_loop:
cmp ecx, [ebp+8] ; cmp i and n
jnle end_for ; if not i <= n, quit
add [ebp-4], ecx ; sum += i
inc ecx
jmp short for_loop

end_for:
mov eax, [ebp-4] ; eax = sum
mov esp, ebp
pop ebp
ret

8

Calling C Standard I/O Functions
• Just follow cdecl calling conventions
segment .data
x dd 0
format db "x = %d\n", 0

segment .text
...
push dword [x] ; push x’s value
push dword format ; push address of format string
call _printf ; note underscore!
add esp, 8 ; remove parameters from stack

