Computer Organization and Architecture

Department of Computer Science
University of Maine

Low - Level Programming

"How do I get this thing to do what I want it to do????"

Since computers were invented, we’ve been trying to figure out how to talk to them

"I hate this machine. It never does what I want it to do, it does only what I tell it to do!"

Physical Communication Mechanisms

- Cables and patch boards (1940's)
- Toggle switches
- Punch cards and paper tape (1950's)
- Teletype (1950's)
- Keyboard and CRT (Glass Teletype)

- Numerous other devices introduced in recent years
 - Mice
 - Touchscreens
 - Light pens
 - Voice
 - Tabletop computers...

What Language Does a Computer Speak?

- There are several levels of abstraction involved in communicating with a computer
 - Application (spreadsheet, word processor, game, etc.)
 -- is created by a High-Level Programming Language
 - which generates Assembly Language
 - which is then assembled into Object Code
 - which is then linked into Machine Language

- This is not the bottom of the ladder

A Task

- Get the computer to display "Hello, World" on the monitor
- Here it is in a few programming languages:
 - Basic
 10 PRINT "Hello, World"
 - C
 #include <stdio.h>
 main()
 {
 printf("Hello, World\n");
 }
 - PHP
 echo ("Hello, World\n");
 - Pascal
 Program Hello(Input, Output);
 begin
 writeln("Hello, World");
 end.
 - C++
 #include <iostream.h>
 int main()
 {
 cout << "Hello, World" << endl;
 return 0;
 }
```
// Java
class Hello {
    public static void main(String[] args) {
        System.out.println("Hello World!");
    }
}

// HTML/Javascript
<html>
<body>
<script language="javascript">
document.write("Hello World!");
</script>
</body>
</html>

// Intel 8086 Assembler
иструкции:
STACK SEGMENT PARA STACK 'STACK'
db 100h dup ?
STACK ENDS
DATA SEGMENT PARA PUBLIC 'DATA'
msg db 'Hello,World!',0dh,0ah
msgLen EQU $
DATA ENDS
CODE SEGMENT PARA PUBLIC 'CODE'
hello PROC near
    start:
        mov ax, 4000h
        mov bx, 1
        mov dx, offset msg
        mov cx, msgLen
        int 21h
        mov ax, 4c00h
        int 21h
hello
endp
CODE ENDS
end start

// Machine Language!

// Slightly more comprehensible...

// Better yet!

// Another version
```
The Nature of Computation

- Ultimately every problem that is solvable by a computer must be expressed as a string of 0’s and 1’s.
- The nature of computation was understood by mathematicians long before we had computers (1930s).
 - Turing Machines
 - Church’s Lambda Calculus
 - Recursive Function Theory

Turing Machine

- Has an infinite tape divided into cells
- Has a single read/write head
- Each cell can contain 0 or 1 (or be blank)
- Can only move left, move right, read a single cell or write a single cell

Church’s Thesis

- Anything that is computable can be computed by a Turing Machine

Gödel’s Incompleteness Theorem

- Any consistent system that is powerful enough to express arithmetic is incomplete
- There are true statements within the system that cannot be proven to be true
- Can be extended via Church’s thesis to computation

Ramifications of Gödel’s Incompleteness Theorem and Church’s Thesis

- All non-trivial computer languages are equal in power
- One cannot write a computer program to determine properties of other computer programs (Is it a virus? Will it ever stop running? …)
- There is truth outside computation
- There are uncomputable problems

Computer Architecture

- Baer: “The design of the integrated system which provides a useful tool to the programmer”
- Hayes: “The study of the structure, behavior and design of computers”
- Abd-Alla:
 - “The design of the system specification at a general or subsystem level”
- Foster: “The art of designing a machine that will be a pleasure to work with”
- Hennessy and Patterson:
 - “The interface between the hardware and the lowest level software”
Common themes in definitions
- Design / structure
- Art
- System
- Tool for programmer and application
- Interface

Stallings Definition
- Computer “architecture” refers to the set of attributes of a computer system that are visible to a programmer
- Those attributes have a direct impact on the execution of a program
 - Instruction sets
 - Data representations
 - Addressing
 - I/O
- Example: Is there a multiply instruction?

Computer Organization
- Synonymous with “architecture” in many uses and textbooks
- Organization is concerned with how features (attributes) are implemented
 - Control signals, interfaces, memory technology.
- Transparent to the programmer
 - Example: Is there a hardware multiply unit or is it done by repeated addition?

Architecture & Organization
- All members of the Intel x86 family share the same basic architecture
- All members of the IBM System/370 family share the same basic architecture
- This gives code compatibility
 - At least backwards
- Organization differs between different versions

Structure & Function
- Structure is the way in which components relate to each other
- Function is the operation of individual components as part of the structure

What is the function of a computer?
- “Computer” used to be a job title, not a piece of equipment
- Requirements of a computer:
 - Process data
 - Store data
 - Move data between the computer and the outside world
 - Control the operation of the above
Functional View

- Operations (a) Data movement
- Operations (b) Storage
- Operation (c) Processing from/to storage
- Operation (d) Processing from storage to I/O

Structure - Top Level
Outline of the Book (1)
- Computer Evolution and Performance
- Computer Interconnection Structures
- Internal Memory
- External Memory
- Input/Output
- Operating Systems Support
- Computer Arithmetic
- Instruction Sets

Outline of the Book (2)
- CPU Structure and Function
- Reduced Instruction Set Computers
- Superscalar Processors
- Control Unit Operation
- Microprogrammed Control
- Multiprocessors and Vector Processing
- Digital Logic (Appendix)