Chapter 9
Computer Arithmetic

Arithmetic & Logic Unit
- Performs arithmetic and logic operations on data - everything that we think of as "computing."
- Everything else in the computer is there to service this unit
- All ALUs handle integers
- Some may handle floating point (real) numbers
- May be separate FPU (math co-processor)
- FPU may be on separate chip (486DX+)

ALU Inputs and Outputs

Integer Representation
- We have the smallest possible alphabet: the symbols 0 & 1 represent everything
- No minus sign
- No period
- Signed-Magnitude
- Two’s complement

Benefits of 2’s complement
- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - 3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB 11111101

Geometric Depiction of Twos Complement Integers
2’s complement negation

- “Taking the 2’s complement” (complement and add 1) is computing the arithmetic negation of a number
- Compute \(y = 0 - x \)
 - Or
- Compute \(y \) such that \(x + y = 0 \)

Addition and Subtraction

- For addition use normal binary addition
 - 0+0 = sum 0 carry 0
 - 0+1 = sum 1 carry 0
 - 1+1 = sum 0 carry 1
- Monitor MSB for overflow
 - Overflow cannot occur when adding 2 operands with the different signs
 - If 2 operand have same sign and result has a different sign, overflow has occurred
- Subtraction: Take 2’s complement of subtrahend and add to minuend
 - i.e. \(a - b = a + (-b) \)
- So we only need addition and complement circuits

Hardware for Addition and Subtraction

Side note: Carry look-ahead

- Binary addition would seem to be dramatically slower for large registers
 - consider 0111 + 0011
 - carries propagate left-to-right
 - So 64-bit addition would be 8 times slower than 8-bit addition
- It is possible to build a circuit called a “carry look-ahead adder” that speeds up addition by eliminating the need to “ripple” carries through the word

Carry look-ahead

- Carry look-ahead is expensive
- If \(n \) is the number of bits in a ripple adder, the circuit complexity (number of gates) is \(O(n) \)
- For full carry look-ahead, the complexity is \(O(n^3) \)
- Complexity can be reduced by rippling smaller look-aheads: e.g., each 16 bit group is handled by four 4-bit adders and the 16-bit adders are rippled into a 64-bit adder

Multiplication

- A complex operation compared with addition and subtraction
- Many algorithms are used, esp. for large numbers
- Simple algorithm is the same long multiplication taught in grade school
 - Compute partial product for each digit
 - Add partial products
Multiplication Example

- 1011 Multiplicand (11 dec)
- x 1101 Multiplier (13 dec)
- 1011 Partial products
- 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

Simplifications for Binary Arithmetic

- Partial products are easy to compute:
 - If bit is 0, partial product is 0
 - If bit is 1, partial product is multiplicand
- Can add each partial product as it is generated, so no storage is needed
- Binary multiplication of unsigned integers reduces to “shift and add”

Control logic and registers

- 3 n bit registers, 1 bit carry register CF
- Register set up
 - Q register <- multiplier
 - M register <- multiplicand
 - A register <- 0
 - CF <- 0
- CF for carries after addition
- Product will be 2n bits in A Q registers

Unsigned Binary Multiplication

Flowchart for Unsigned Binary Multiplication

Multiplication Algorithm

- Repeat n times:
 - If Q_0 = 1 Add M into A, store carry in CF
 - Shift CF, A, Q right one bit so that:
 - A_{n-1} <- CF
 - Q_{n-1} <- A_0
 - Q_0 is lost
- Note that during execution Q contains bits from both product and multiplier
Execution of Example

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
<th>Q</th>
<th>M</th>
<th>Initial Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>1101</td>
<td>1011</td>
<td></td>
</tr>
</tbody>
</table>

0 1011 1101 1011 Add First Cycle

0 0101 1110 1011 Shift

0 1101 1111 1011 Add Second Cycle

0 0110 1111 1011 Shift

1 0011 1111 1011 Add Third Cycle

0 1000 1111 1011 Shift Fourth Cycle

Two's complement multiplication

- Shift and add does not work for two's complement numbers
- Previous example as 4-bit 2's complement:
 -5 (1011) * -3 (1101) = -113 (10001111)
- What is the problem?
 - Partial products are 2n-bit products

When the multiplicand is negative

- Each addition of the negative multiplicand must be negative number with 2n bits
- Sign extend multiplicand into partial product

<table>
<thead>
<tr>
<th>1001 (9)</th>
<th>1001 (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001 1001 = 2^3</td>
<td>11111101 (-7) * 2^1 = (-7)</td>
</tr>
<tr>
<td>00010010 1001 = 2^2</td>
<td>11110010 (-7) * 2^0 = (-7)</td>
</tr>
<tr>
<td>00001001 (27)</td>
<td>11101011 (-27)</td>
</tr>
</tbody>
</table>

(a) Unsigned integers (b) Two's complement integers

- Or sign extend both operands to double precision
- Not efficient

When the multiplier is negative

- When the multiplier (Q register) is negative, the bits of the operand do not correspond to shifts and adds needed

1101 = -1 * 2^3 + 1 * 2^2 + 1 * 2^0

= -(2^3 + 2^2 + 2^0)

But we need

-(2^1 + 2^0)

The obvious solution

- Convert multiplier and multiplicand to unsigned integers
- Multiply
- If original signs differed, negate result

But there are more efficient ways

Fast multiplication

- Consider the product 6234 * 99990
 - We could do 4 single-digit multiplies and add partial sums
- Or we can express the product as

6234 * (10^4 - 10^0)

- In binary x * 00111100 can be expressed as

x * (2^5 + 2^4 + 2^2 + 2^0) = x * 60

- We can reduce the number of operations to 2 by observing that 00111100 = 01000000 - 00000010 (64 - 4 = 60)
 - x * 00111100 = x * 2^5 - x * 2^2
 - Each block of 1's can be reduced to two operations
 - In the worst case 01010101 we still have only 8 operations
Booth's Algorithm Registers and Setup
- 3 n bit registers, 1 bit register logically to the right of Q (denoted as Q₋₁)
- Register set up
 - Q register ← multiplier
 - Q₋₁ ← 0
 - M register ← multiplicand
 - A register ← 0
 - Count ← n
- Product will be 2n bits in A Q registers

Booth's Algorithm Control Logic
- Bits of the multiplier are scanned one at a time (the current bit Q₀)
- As bit is examined the bit to the right is considered also (the previous bit Q₋₁)
- Then:
 00: Middle of a string of 0s, so no arithmetic operation.
 01: End of a string of 1s, so add the multiplicand to the left half of the product (A).
 10: Beginning of a string of 1s, so subtract the multiplicand from the left half of the product (A).
 11: Middle of a string of 1s, so no arithmetic operation.
- Then shift A, Q, bit Q₋₁ right one bit using an arithmetic shift.
- In an arithmetic shift, the msb remains unchanged.

Booth's Algorithm Example of Booth's Algorithm (7 * 3 = 21)

<table>
<thead>
<tr>
<th>A</th>
<th>Q</th>
<th>Q₋₁</th>
<th>M</th>
<th>C/P</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1101</td>
<td>0</td>
<td>0110</td>
<td></td>
<td>Initial Values</td>
</tr>
<tr>
<td>1110</td>
<td>1101</td>
<td>0</td>
<td>0010</td>
<td>10</td>
<td>A ← A - 2 = -2</td>
</tr>
<tr>
<td>1111</td>
<td>0110</td>
<td>1</td>
<td>0010</td>
<td></td>
<td>>>1</td>
</tr>
<tr>
<td>0001</td>
<td>0110</td>
<td>1</td>
<td>0010</td>
<td>01</td>
<td>A ← A + 2</td>
</tr>
<tr>
<td>0000</td>
<td>1011</td>
<td>0</td>
<td>0010</td>
<td></td>
<td>>>1</td>
</tr>
<tr>
<td>1110</td>
<td>1011</td>
<td>0</td>
<td>0010</td>
<td>01</td>
<td>A ← A - 2 = -2</td>
</tr>
<tr>
<td>1111</td>
<td>0101</td>
<td>1</td>
<td>0010</td>
<td></td>
<td>>>1</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1</td>
<td>0010</td>
<td>11</td>
<td>>>1 A:Q = -6</td>
</tr>
</tbody>
</table>

Example: 6 * -1 = -6 (1111 = -1)

<table>
<thead>
<tr>
<th>A</th>
<th>Q</th>
<th>Q₋₁</th>
<th>M</th>
<th>C/P</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1111</td>
<td>0</td>
<td>0110</td>
<td></td>
<td>Initial Values</td>
</tr>
<tr>
<td>1010</td>
<td>1111</td>
<td>1</td>
<td>0110</td>
<td>10</td>
<td>A ← A - 6 = -6</td>
</tr>
<tr>
<td>1101</td>
<td>0111</td>
<td>1</td>
<td>0110</td>
<td></td>
<td>>>1</td>
</tr>
<tr>
<td>1110</td>
<td>1011</td>
<td>1</td>
<td>0110</td>
<td>11</td>
<td>>>1</td>
</tr>
<tr>
<td>1111</td>
<td>0101</td>
<td>1</td>
<td>0110</td>
<td>11</td>
<td>>>1 A:Q = -6</td>
</tr>
</tbody>
</table>
Example: $3 \times -2 = -6$ ($1110 = -2$)

<table>
<thead>
<tr>
<th>A</th>
<th>Q</th>
<th>C/P</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010 0011 0</td>
<td>1110 10</td>
<td>A \leftarrow A \times (-2) = 2</td>
<td></td>
</tr>
<tr>
<td>0000 1000 1</td>
<td>1110 11</td>
<td>$>>$ 1</td>
<td></td>
</tr>
<tr>
<td>1110 1000 1</td>
<td>1110 01</td>
<td>A \leftarrow A \times (-2) \Rightarrow</td>
<td></td>
</tr>
<tr>
<td>1111 1010 0</td>
<td>1110 00</td>
<td>$>>$ 1 A:Q $=$ -6</td>
<td></td>
</tr>
</tbody>
</table>

Division
- More complex than multiplication to implement (for computers as well as humans!)
 - Some processors designed for embedded applications or digital signal processing lack a divide instruction
- Basically inverse of add and shift: shift and subtract
- Similar to long division taught in grade school

Unsigned Division In Principle

147 / 11 = 13 with remainder 4

<table>
<thead>
<tr>
<th>Quotient</th>
<th>Divisor \rightarrow 1011</th>
<th>Dividend \leftarrow 00111101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Remainders \leftarrow 0110 1011 01111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remainder \leftarrow 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unsigned Division algorithm
- Using same registers (A, M, Q, count) as multiplication
- Results of division are quotient and remainder
 - Q will hold the quotient
 - A will hold the remainder
- Initial values
 - $Q \leftarrow 0$
 - $A \leftarrow$ Dividend
 - $M \leftarrow$ Divisor
 - $Count \leftarrow n$

Unsigned Division Flowchart

Example

![Unsigned Division Flowchart Diagram](image)

- Initial values
- A, M, Q, $Count$
- Divide
- Subtract M from A
- $A \leftarrow A - M$
- Q \leftarrow $Q + 1$

Figure 3.3: An example of division using the shift divide algorithm.
Two's complement division

- More difficult than unsigned division
- Algorithm:
 1. M ← Divisor, A:Q ← dividend sign extended to 2n bits; for example 0111 → 00000111; 1001 → 11111001 (note that 0111 = 7 and 1001 = -3).
 2. Shift A:Q left 1 bit
 3. If M and A have same signs, perform A ← A − M otherwise perform A ← A + M
 4. The preceding operation succeeds if the sign of A is unchanged. If successful, or (A=0 and Q=0) set Q0 ← 1. If not successful, and (A<0 or Q<0) set Q0 ← 0 and restore the previous value of A
 5. Repeat steps 2, 3, 4 for n bit positions in Q
 6. Remainder is in A. If the signs of the divisor and dividend were the same then the quotient is in Q, otherwise the correct quotient is 0:Q.

2's complement division examples

<table>
<thead>
<tr>
<th>A\ Q</th>
<th>M \1001</th>
<th>A\ Q</th>
<th>M \1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0010</td>
<td>1111</td>
<td>0010</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>1111</td>
<td>0100</td>
<td>1111</td>
<td>0100</td>
</tr>
<tr>
<td>0001</td>
<td>0100</td>
<td>0001</td>
<td>0100</td>
</tr>
<tr>
<td>1100</td>
<td>0001</td>
<td>1100</td>
<td>0001</td>
</tr>
<tr>
<td>1111</td>
<td>0001</td>
<td>1111</td>
<td>0001</td>
</tr>
<tr>
<td>1111</td>
<td>0010</td>
<td>1111</td>
<td>0010</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
</tr>
</tbody>
</table>

(a) \(7/3\) (b) \(-7/3\)

7 / 3 = 2 R 1
7 / -3 = -2 R 1
-7 / 3 = -2 R -1
-7 / -3 = 2 R -1

Here the remainder is defined as:
Dividend = Quotient * Divisor + Remainder

IEEE-754 Floating Point Numbers

- Format was discussed earlier in class
- Before IEEE-754 each family of computers had proprietary format: Cray, Vax, IBM
- Some Cray and IBM machines still use these formats
- Most are similar to IEEE formats but vary in details (bits in exponent or mantissa):
 - IBM Base 16 exponent
 - Vax, Cray: bias differs from IEEE
- Cannot make precise translations from one format to another
- Older binary scientific data not easily accessible

IEEE 754

- +/- 1.significand x 2 exponent
- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results
Floating Point Examples

- For a 32 bit number
 - 8 bit exponent
 - +/- 2^{127} = 1.5×10^{37}

- Accuracy
 - The effect of changing lsb of mantissa
 - 23 bit mantissa $2^{-23} = 1.2 \times 10^{-7}$
 - About 6 decimal places

Expressible Numbers

- Note that there is a tradeoff between density and precision
- For a floating point representation of n bits, if we increase the precision by using more bits in the mantissa then then we decrease the range
- If we increase the range by using more bits for the exponent then we decrease the density and precision

Density of Floating Point Numbers

FP Arithmetic +/-

- Addition and subtraction are more complex than multiplication and division
- Need to align mantissas
- Algorithm:
 - Check for zeros
 - Align significands (adjusting exponents)
 - Add or subtract significands
 - Normalize result

Floating Point Arithmetic Operations

<table>
<thead>
<tr>
<th>Floating Point Numbers</th>
<th>Arithmetic Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = x_1 \times 2^{x_0}$</td>
<td>$x = x_1 \times 2^{x_0}$</td>
</tr>
<tr>
<td>$y = y_1 \times 2^{y_0}$</td>
<td>$x = x_1 \times 2^{x_0}$</td>
</tr>
<tr>
<td>$z = z_1 \times 2^{z_0}$</td>
<td>$x = x_1 \times 2^{x_0}$</td>
</tr>
<tr>
<td>$x + y + z$</td>
<td>$x + y + z$</td>
</tr>
<tr>
<td>$x - y - z$</td>
<td>$x - y - z$</td>
</tr>
<tr>
<td>$x \times y \times z$</td>
<td>$x \times y \times z$</td>
</tr>
<tr>
<td>$x \div y \div z$</td>
<td>$x \div y \div z$</td>
</tr>
</tbody>
</table>

Examples:

- $X = 0.3 \times 10^3 = 30$
- $F = 0.2 \times 10^{-2} = 0.02$
- $X = 0.3 \times 10^{-2} = 0.03 \times 10^{-2} = 30$
- $X = 0.3 \times 10^{-2} = 0.2 \times 10^{-2} = 0.15 \times 10^{-2} = 200$
- $X = 0.3 \times 10^{-2} = 0.2 \times 10^{-2} = 0.15 \times 10^{-2} = 0.06 \times 10^{-2} = 0.015$
- $X = 0.3 \times 10^{-2} = 1.5 \times 10^{-3} = 0.15$
FP Addition & Subtraction Flowchart

For \(Z < -X + Y \) and \(Z < -X - Y \)

1. **Zero check**
 - Addition and subtraction identical except for sign change
 - For subtraction, just negate subtrahend
 \((Y \text{ in } Z = X - Y)\) then compute \(Z = X + Y \)
 - If either operand is 0 report the other as the result

2. **Significand Alignment**
 - Manipulate numbers so that both exponents are equal
 - Shift number with smaller exponent to the right - if bits are lost they will be less significant
 - Repeat
 - Shift mantissa right 1 bit
 - Add 1 to exponent
 - Until exponents are equal
 - If mantissa becomes 0 report other number as result

3. **Normalization**
 - While (MSB of mantissa == 0)
 - Shift mantissa left one bit
 - Decrement exponent
 - Check for exponent underflow
 - Round mantissa

4. **Addition**
 - Add mantissas together, taking sign into account
 - May result in 0 if signs differ
 - Can result in mantissa overflow by 1 bit (carry)
 - Shift mantissa right and increment exponent
 - Report error if exponent overflow

5. **FP Arithmetic Multiplication and Division**
 - Simpler processes than addition and subtraction
 - Check for zero
 - Add/subtract exponents
 - Multiply/divide significands (watch sign)
 - Normalize
 - Round
Floating Point Multiplication

- If either operand is 0 report 0
- Add exponents
 - Because addition doubles bias, first subtract the bias from one exponent
- If exponent underflow or overflow, report error
 - Underflow may be reported as 0 and overflow as infinity
- Multiply mantissas as if they were integers (similar to 2's comp mult.)
 - Note product is twice as long as factors
- Normalize and round
 - Same process as addition
 - Could result in exponent underflow

Floating Point Division

- If divisor is 0 report error or infinity; dividend 0 then result is 0
- Subtract divisor exponent from dividend exp.
 - Removes bias so add bias back
- If exponent underflow or overflow, report error
 - Underflow may be reported as 0 and overflow as infinity
- Divide mantissas as if they were integers (similar to 2's comp mult.)
 - Note product is twice as long as factors
- Normalize and round
 - Same process as addition
 - Could result in exponent underflow

IEEE Standard for Binary Arithmetic

- Specifies practices and procedures beyond format specification
 - Guard bits (intermediate formats)
 - Rounding
 - Treatment of infinities
 - Quiet and signaling NaNs
 - Denormalized numbers

Precision considerations

- Floating point arithmetic is inherently inexact except where only numbers composed of sums of powers of 2 are used
- To preserve maximum precision there are two main techniques:
 - Guard bits
 - Rounding rules
Guard bits
- Length of FPU registers > bits in mantissa
- Allows some preservation of precision when
 - Aligning exponents for addition
 - Multiplying or dividing significands
- We have seen that results of arithmetic can vary when intermediate stores to memory are made in the course of a computation

Rounding
- Conventional banker’s rounding (round up if 0.5) has a slight bias toward the larger number
- To remove this bias use round-to-even:
 - 1.5 -> 2
 - 2.5 -> 2
 - 3.5 -> 4
 - 4.5 -> 4
 - Etc

IEEE Rounding
- Four types are defined:
 - Round to nearest (round to even)
 - Round to + infinity
 - Round to - infinity
 - Round to 0

Round to nearest
- If extra bits beyond mantissa are 100...1... then round up
- If extra bits are 01... then truncate
- Special case: 10000...0
 - Round up if last representable bit is 1
 - Truncate if last representable bit is 0

Round to +/- infinity
- Useful for interval arithmetic
 - Result of fp computation is expressed as an interval with upper and lower endpoints
 - Width of interval gives measure of precision
 - In numerical analysis algorithms are designed to minimize width of interval

Round to 0
- Simple truncation, obvious bias
- May be needed when explicitly rounding following operations with transcendental functions
Infinities

• Infinity treated as limiting case for real arithmetic
• Most arithmetic operations involving infinities produce infinity

Quiet and Signaling NaNs

• NaN = Not a Number
• Signaling NaN causes invalid operation exception if used as operand
• Quiet NaN can propagate through arithmetic operations without raising an exception
• Signaling NaNs are useful for initial values of uninitialized variables
• Actual representation is implementation (processor) specific

Quiet NaNs

<table>
<thead>
<tr>
<th>Operation</th>
<th>Quiet NaN Produced by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Any operation on a signaling NaN</td>
</tr>
<tr>
<td>Add or subtract</td>
<td>Magnitude addition of infinities:</td>
</tr>
<tr>
<td></td>
<td>(+∞)+ (+∞) = (+∞)</td>
</tr>
<tr>
<td></td>
<td>(+∞)+ (-∞) = (-∞)</td>
</tr>
<tr>
<td></td>
<td>(-∞)+ (+∞) = (+∞)</td>
</tr>
<tr>
<td></td>
<td>(-∞)+ (-∞) = (-∞)</td>
</tr>
<tr>
<td>Multiply</td>
<td>0 x = 0 x</td>
</tr>
<tr>
<td>Division</td>
<td>0/0 = 0/0</td>
</tr>
<tr>
<td>Remainder</td>
<td>x REM 0 or y REM y</td>
</tr>
<tr>
<td>Square root</td>
<td>√x when x ≥ 0</td>
</tr>
</tbody>
</table>

Denormalized Numbers

• Handle exponent underflow
• Provide values in the “hole around 0”

Unnormalized Numbers

• Denormalized numbers have fewer bits of precision than normal numbers
• When an operation is performed with a denormalized number and a normal number, the result is called an “unnormal” number
• Precision is unknown
• FPU can be programmed to raise an exception for unnormal computations