
1

Chapter 12
CPU Structure and Function

Computer Organization and Architecture
CPU Structure

• CPU must:
— Fetch instructions
— Interpret instructions
— Fetch data
— Process data
— Write data

• These functions require
— internal temporary storage
— remembering location of instruction to fetch next

Simplified view of CPU With System Bus More Detailed CPU Internal Structure

Register Organization

• CPU must have some working space (temporary
storage); called “registers”

• Number and function vary between processor
designs
— One of the major design decisions
— Top level of memory hierarchy

• Two main roles
1. User Visible Registers
2. Control and Status Registers

User Visible Registers

• A user visible register is simply a register than
can referenced with the machine language of
the processor

• Four categories
— General Purpose
— Data
— Address
— Condition Codes

2

General Purpose Registers (1)

• May be true general purpose (all registers are the
same)
— Orthogonal to the instruction set: any register can hold any

operand for any instruction (clearly not the case with X86!)
— May be restricted (each register has special functions)

• In some machines GP registers can be used for data or
addressing

• In other machines there is a separation:
— Data

– Accumulator and count registers
— Addressing

– Segment, index, autoindex registers
– Stack pointer

• Even on machines with true general purpose registers, if there is
user-visible stack addressing then the stack pointer is special-
purpose

General Purpose Registers (2)

• Design Decision:
— Make them general purpose

– Increase flexibility and programmer options
– Increase instruction size & complexity

— Make them specialized
– Smaller (faster) instructions because of implied operands
– Less flexibility

How Many GP Registers?

• Between 8 - 32
• Fewer = more memory references
• More registers do not reduce memory

references and but they do take up processor
real estate

• See also RISC – hundreds of registers in the
machine (but only a few in use at any given
moment)

How big?

• Large enough to hold full address
— This was Intel’s engineering kludge: 8086 index

registers CANNOT hold a full address

• Large enough to hold full word
• Sometimes possible to combine two data

registers for double-precision values

Condition Code (Flag) Registers

• Typically partially user-visible
• Sets of individual bits

— e.g. result of last operation was zero

• Can be read (implicitly) by programs
— e.g. Jump if zero

• Cannot (usually) be set directly (addressed) by
programs
— X86 has direct ops for carry flag only
— STC, CLC, CMC
— BT (Bit Test) Instruction

Machines without Condition Code Regs

• IA-64 (Itanium) and MIPS processors do not use
condition code registers

• Conditional branch instructions specify a
comparison and act on the result without
storing the result in condition codes

3

Advantages and Disadvantages Control & Status Registers

• Four registers essential to instruction execution:
— Program Counter (PC)

– Address of next instruction to be fetched

— Instruction Register (IR)
– Current instruction fetched from mem

— Memory Address Register (MAR)
– Pointer to mem

— Memory Buffer Register (MBR)
– Word of data read or to be written

• Not all processors explicitly have MAR/MBR but
equivalent functionality is present in all.

MAR/MBR

• A “staging area” for memory access
— MAR connects to address bus
— MBR connects to data bus
— User registers exchange data with MBR

• Processor updates PC after instruction fetch;
branch or skip can also update PC

• Fetched instruction is loaded into IR for
decoding

• Data are exchanged with memory using
MAR/MBR

• User-visible regs exchange data with MBR

ALU

• ALU typically has direct access to MBR and user
registers

• Additional buffering registers typically are
present at the “boundary”

• Serve as input and output registers for the ALU;
exchange data with MBR and user-visible regs

Program Status Word
• Present in many processors –a set of bits indicating

machine status (including condition codes)
• Typical:

— Sign of last result
— Zero
— Carry
— Equal
— Overflow
— Interrupt enable/disable
— Supervisor mode (enable privileged instructions)

• X86 has flags/eflags plus control registers
• Instruction set has LMSW / SMSW as vestiges of 80286

PSW register

Supervisor Mode

• AKA Kernel mode, or with x86, Ring 0
— Allows privileged instructions to execute
— Used by operating system
— Not available to user programs
— Most control registers are only available in

supervisor mode

4

Other status and control registers

• These vary by machine. Examples:
— Pointer to current process information (x86 TR =

Task Register)
— Interrupt vector pointer (x86 IDTR)
— System stack pointer (x86 SS:esp)
— Page table pointer (x86 CR3)
— I/O registers (not used in Intel x86)

• CPU design and operating system design are
closely linked

Ex: Microprocessor Register Organizations

Intel and Motorola Differences

• Motorola
— Uniform register sets (8 data, 9 address)
— Two address registers used as stack pointers

(supervisor and user mode)
— 8, 16, 32 bit data in any of D0 – D7
— No segmentation

• Intel
— Every register is special purpose, some more than

others
— 8 and 16 bit data in AX, BX, CX, DX only
— Segmentation needed for full 20-bit address
— Many dedicated registers and implicit operands
— Variable length machine language is very compact

because of register design

Instruction Cycle

• Chapter 3 revisited and elaborated

The Indirect Cycle

• Instruction execution may involve one or more
memory operands/accesses

• If indirect addressing is used additional
accesses are needed

• Can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect Cycle

5

Instruction Cycle State Diagram Data Flow (Instruction Fetch)

• Specifics depend on CPU design
• But In general:
• Fetch

— PC contains address of next instruction
— Address moved to MAR
— Address placed on address bus
— Control unit requests memory read
— Result placed on data bus, copied to MBR, then to IR
— Meanwhile PC incremented by 1 (or length of

current instruction)

Data Flow (Fetch Diagram) Data Flow (Data Fetch)

• IR is examined
• If indirect addressing, indirect cycle is

performed
— Right most N bits of MBR contain the address which

is transferred to MAR
— Control unit requests memory read
— Result (address of operand) moved to MBR

Data Flow (Indirect Diagram) Data Flow (Execute)

• Fetch and indirect cycles are fairly simple and
predictable; execution may take many forms

• Depends on instruction being executed
• May include

— Memory read/write
— Input/Output
— Register transfers
— ALU operations

6

Data Flow (Interrupt)

• Like fetch, simple and predictable
• Current PC saved to allow resumption after

interrupt
• Contents of PC copied to MBR
• Special memory location (e.g. stack pointer)

loaded to MAR
• MBR written to memory
• PC loaded with address of interrupt handling

routine
• Next instruction (first of interrupt handler) can

be fetched

Data Flow (Interrupt Diagram)

Pipelining

• In pipelining we divide instruction execution into
a number of stages
— After one stage has completed, instruction moves

down the pipeline to the next stage while the next
instruction is started

— Similar to a factory assembly line – we don’t have to
wait for a product to exit the line before starting to
assemble another

• Simplified instruction cycle in Fig 12.5 has 10
stages
— Intel Pentium 4: 20 stages
— Pentium D: 31 stages

Simplified Instruction Cycle

Pipelining: Prefetch

• Instruction prefetch is the simplest form of
pipelining

• Divide instruction into two phases: fetch and
execute
— Fetch accesses main memory
— Execution usually does not access main memory
— Instruction prefetch: fetch next instruction during

execution of current instruction
— Even 8088/8086 processors had small prefetch queues

(4 and 6 bytes) to allow multiple instructions to be
fetched

Two Stage Instruction Pipeline

7

Improved Performance

• But not doubled:
— Fetch is usually shorter than execution

– Prefetch more than one instruction?

— Any jump or branch means that prefetched
instructions are not the required instructions

• So add more stages to improve performance

Pipelining

• A Six stage pipeline:
1. FI Fetch instruction
2. DI Decode instruction
3. CO Calculate operands (i.e. EAs)
4. FO Fetch operands
5. EI Execute instructions
6. WO Write operand

• Overlap these operations so that while
instruction 1 is being decoded, instruction 2 is
being fetched etc.

• Not all instructions use all six stages

Six Stage
Instruction Pipeline

Timing Diagram for
Instruction Pipeline Operation

Assumptions

• Timing diagram shows 9 instructions in 14
clocks rather than 54

• Each operation same length of time
• No memory conflicts

— Values may be in cache
— FO, WO may be null

Complications

• Pipeline speed is limited to speed of slowest
stage

• Conditional branches: result not known until
WO stage

• CO stage may require output from previous
instruction

8

The Effect of a Conditional Branch on
Instruction Pipeline Operation Alternative Pipeline Depiction

Number of stages

• Appears that more pipeline stages => better
performance

• But:
— Pipeline overhead: moving from buffer to buffer,

performing prep and delivery functions can take
time

— Sequential data dependencies slow down the
pipeline

— Amount of control logic increases: logic controlling
gating between stages can be more complex than
the stages being controlled

Speedup Factors
withPipelining

• No branches encountered
• Speedup factor =

kn / (k + n – 1)
• Where k = # stages and
n = # instructions
• As n -> speedup
approaches k

Pipeline Hazards

• Hazards are situations where a portion of the
pipeline has to stall or wait because continued
execution is not possible

• Resource Hazards
— Two or more instructions in the pipeline need the

same resource (e.g., multiply unit)

• Data Hazards
— Conflict in accessing an operand location (e.g., a

register)

• Control Hazards (Branch Hazards)
— Pipeline makes wrong decision about branch

prediction and has to discard instructions

Resource Hazards
• Example: single port memory, no cache. Instruction fetch

and data read cannot be performed in parallel
• Here the Fetch Operand (FO) and Fetch Instruction (FI)

stages contend for the same resource (memory)

9

Resolving Resource Hazards

• Aside from memory other resources that might
be points of contention are registers, ALU, or
ALU components (shifter, multiply/divide unit,
etc.)

• One resolution is to reduce contention by
adding more units or access points (ports into
memory)

• Another approach is to use a reservation table
(see Appendix I – online)

Data Hazards

• Conflict in access of an operand location
— Two instructions in sequence access the a particular

mem or reg operand
— If executed in strict sequence there is no problem
— But in a pipeline it is possible for operands to be

updated in a different order than strict sequence
producing different result

Data Hazard Example

add eax, ebx ; eax <- eax+ebx
sub ecx, eax ; ecx <- ecx-eax

• The ADD does not update eax until stage 5
(Write Operand) at clock 5. But SUB needs
operand at stage 3 (FO) at clock 4. Pipeline
stalls for 2 clocks

Types of Data Hazard

• Read-after-Write or “true dependency” (RAW)
— Instruction modifies operand and a later instruction

reads the same operand. Read cannot take place
before the write. (Previous example)

• Write-after-Read or “antidepency” (WAR)
— Instruction reads an operand and a later instruction

writes the same operand. Write cannot take place
before the read.

• Write-after-Write or “output depency” (WAW)
— Two instructions writes to the same operand. Write

operations must execute in correct order.

A note on terminology
• Everybody agrees that this instruction sequence has a

data hazard, and that it is a “true data dependency”
ADD eax, ecx
MOV ebx, eax

• Unfortunately, in the literature some people describe
this as “read after write” (RAW) while others describe
it as “write after read” (WAR)
— The RAW description describes the instruction sequence as it

appears in the instruction stream and as it should be correctly
executed by the processor. The Read MUST take place after
the Write

— The WAR description describes the hazard, i.e., it describes
the incorrect execution sequence where the Write actually
occurs after the read, so the result is not correct

• The textbook uses RAW in Ch. 12 and WAR in Ch. 14.
• We will use the RAW approach (describe the instruction

stream as it should be executed)

Control Hazards: Dealing with Branches

• Branches are the primary impediment to
ensuring optimal pipeline efficiency

• Several approaches to dealing with conditional
branches
— Multiple Streams
— Prefetch Branch Target
— Loop buffer
— Branch prediction
— Delayed branching

10

Multiple Streams

• Brute force approach: Have two pipelines and
prefetch each branch into a separate pipeline

• Then use the appropriate pipeline
• Drawbacks:

— Leads to bus & register contention
— Multiple branches lead to further pipelines being

needed

• Used in IBM 370/168 and 3033

Prefetch Branch Target

• Target of branch is prefetched in addition to
instructions following branch

• Keep target until branch is executed
• Used by IBM 360/91
• Only gains one instruction in pipeline if branch

is taken

Loop Buffer

• A small, very fast cache memory contains n
most recently fetched instructions in sequence
— Maintained by fetch stage of pipeline
— Check buffer for branch target before fetching from

memory

• Very good for small loops or jumps
• Behaves as a small instruction cache

— Contains only instructions fetched in sequence
— Smaller and cheaper than associative cache
— If branch target is near the branch then it will

already be in the loop buffer

Loop Buffer

• Difference between loop buffer and instruction
cache is that the loop buffer does not use
associative memory – instructions are in
sequence

• Used by CDC, CRAY-1, Motorola 68010 for DBcc
(decrement and branch on condition)
instruction only; 3 words

Loop Buffer Diagram Branch Prediction

• Basically guessing whether or not a branch will
be taken: Several strategies can be used:
— Predict always taken
— Predict never taken
— Predict by opcode
— Taken/Not Taken switch
— Branch history table

• First two strategies are static (no dependence
on instruction history); last two are dynamic
and vary with instruction history

• Predict by opcode is a static strategy that
varies by opcode.

11

Branch Prediction: Never/Always

• Predict never taken/always taken
• Simple approach

— Assume that jump will not / will happen
— Always fetch next instruction / branch target
— 68020 & VAX 11/780 use never taken
— VAX will not prefetch after branch if a page fault

would result (O/S v CPU design)

• Studies suggests > 50% of instructions take
branch

• But probability of page fault is higher with the
branch

Branch Prediction by Opcode

• Some instructions are more likely to result in a
jump than others
— Example: Intel LOOP instructions
— Can get up to 75% success

• Variation: predict that backwards branches
taken, forward are not taken

Branch Prediction: History

• One or more Taken/Not taken bits are
associated with each conditional branch

• Bits are stored in high speed memory; either
associated with instruction in cache or
maintained in a small table

• With a single bit we can only record taken or
not taken on last execution

• For loops with many iterations this will miss
twice (once at start, once at end)

Branch Prediction: 2 bits

• With two bits we can either record the result
of the last two executions or some other state
indicator

• Typical approach in Fig 12.16:
— First predict taken
— Continue to predict taken until two successive

predictions are wrong
— Then predict not taken
— Continue to predict not taken until two successive

predictions are wrong

• 2-bit prediction usually has only one miss per
loop

Branch Prediction Flowchart Branch Prediction: FSM

• A more compact way to express this branch
prediction scheme is a finite state machine

• Start in upper left hand corner

12

Branch History Table

• If decision is made to take the branch the target
instruction cannot be fetched until the target
address operand is decoded

• Branch history table is a small cache memory
associated with the fetch stage of a pipeline

• Each entry has three elements:
— Instruction address
— Branch history bits
— Target address (or instruction)

Branch History Table

Design issues

• Issue is size of branch table
• For large tables, can be up to 94% correct
• Indexed by LS bits of instruction address
• Many branches in small block of code can

reduce accuracy

N-bit branch history prediction

• Use saturating counter (no wrap around)
• Keep an n-bit saturating counter for each

branch.
• Increment it on branch taken and decrement it

on branch not taken .
• If the counter is greater than or equal to half

its maximum value, predict the branch as
taken.

• This can be done for any n
• n=2 performs almost as good as other values for

n.

Delayed Branch

• Improve pipeline performance by rearranging
instructions so that branch instructions execute
after they actually appear in the code

• Use in some RISC machines
• Discussed in more detail later

Pentium Branch Prediction

• The previous discussion is simplified
• See
http://www.x86.org/articles/branch/branchprediction.htm

• Interesting discussion of the original not-very-
good branch prediction in Pentium

• Later processors use a 2-level branch
prediction mechanism that can correctly
predict repetitive patterns

http://www.x86.org/articles/branch/branchprediction.htm

13

Intel 80486 Pipelining (5 stages)
• Fetch

— From cache or external memory
— Put in one of two 16-byte prefetch buffers
— Fill buffer with new data as soon as old data consumed
— Average 5 instructions fetched per load
— Independent of other stages to keep buffers full

• Decode stage 1 gets 3 bytes from fetch buffers
— Opcode & address-mode info
— This info found in at most first 3 bytes of instruction
— Can direct D2 stage to get rest of instruction

• Decode stage 2
— Expand opcode into control signals
— Computation of complex address modes

• Execute
— ALU operations, cache access, register update

• Writeback
— Update registers & flags
— Results sent to cache & bus interface write buffers

80486 Instruction Pipeline Examples

X86 Integer Unit Registers

• Includes models

Floating Point Unit

EFLAGS Register

•Note that upper 32 bits of 64 bit rflags are unused

Control Registers

14

MMX Register Mapping

• MMX uses several 64 bit data types
• Use 3 bit register address fields

— 8 registers

• No MMX specific registers
— Aliasing to lower 64 bits of existing floating point

registers
— Direct addressing instead of stack addressing
— Upper 16 bits set to all 1’s (NaN) so that register is

not valid for subsequent FP operation

• EMMS (Empty MMX State) instruction used at
end of MMX block

Mapping of MMX Registers to
Floating-Point Registers

Pentium Interrupt Processing

• Interrupts (signal from hardware)
— Maskable
— Nonmaskable

• Exceptions (generated from software)
— Processor detected (integer div 0, page fault)
— Programmed (INTO, INT, INt3, BOUND)

• 5 priority classes provide predictable service
order

Real Mode interrupt processing

• In real mode (16-bit code) interrupt vectors are
stored in the first physical 1KB of memory

• Addresses 0000:0000 through 0000:03FF
• Interrupt vectors are 32-bit segment:offset

addresses
• 256 * 4 bytes occupies first 1KB of memory

Protected Mode Interrupt Processing

• Interrupts are vectored through the Interrupt
Descriptor Table (IDT)

• The IDTR register points to base of IDT
• 8-byte interrupt descriptor is very similar to a

segment descriptor in the LDT or GDT

The ARM Processor

• Key attributes:
— Moderate array of uniform registers; more than CISC

machines but fewer than many RISC machines
— Load/store model of data processing
— Uniform fixed length instruction set (32 bits standard

and 16 bits Thumb)
— Shift or rotate processing with all data/logical

instructions. Separate ALU and shifter units
— Small number of addressing modes (but still

somewhat richer than most RISC machines)
— Auto-increment and auto-decrement addressing

modes
— Conditional execution of instructions removes many

branch processing issues

15

ARM Processor Organization

• ARM organization varies significantly from one
implementation to the next and from one
version to the next

• We will discuss a generalized and simplified
model

• Note that ARM instructions use 3-operand
addresses: 2 source registers and a destination

• Output of ALU can go into a register or can be
used to generate a memory address in the MAR

Simplified
Organization

Processor Modes

• Early microprocessors had only one operating
mode; everything was accessible to the current
program

• Many operating systems use only two processor
modes: user and kernel (or supervisor)

• The ARM processor has 7 operating modes
• Most applications execute in User mode.

— Program cannot access protected system resources
or change mode except by causing an exception

Privileged Modes

• The remaining six modes are used to run
system software

• Reasons for large number of modes are
— OS can tailor systems software to a variety of

circumstances
— Certain registers are dedicated for use each of the

privileged modes, allowing fast context switching
• Five modes are known as exception modes

— Entered when specific exceptions occur
— Full access to system resources
— Can switch modes
— Dedicated registers for each mode substitute for

some of the user mode registers

Exception Modes
• Supervisor mode: normal running mode for OS

— Entered when processor encounters a software interrupt
instruction (standard way to invoke system services)

• Abort mode: entered in response to memory faults
• Undefined Mode: Entered when execution of an

unsupported instruction is attempted
• Fast interrupt mode: Entered when CPU receives signal

from the designated fast interrupt source
— Fast interrupts cannot be interrupted but can interrupt a normal

interrupt

• Interrupt Mode: for all but the fast interrupt.
— Can only be interrupted by a fast interrupt

System Mode

• Not entered by any exception
• Uses same registers as user mode
• Used for operating system tasks; can be

interrupted by any of the five exception
categories

16

Register Organization
• Total of 37 32-bit registers

— 31 are referred to as general purpose register although some
such R15 (PC) have special purposes

— Six program status registers

• Registers are arranged in partially overlapping
banks.Each processing mode has a bank.

• At any time sixteen numbered registers and one or two
program status registers are visible for a total of 16 or
17 visible registers
— R0 through R7 plus R15 (PC) and Current Program Status

Register (CPSR) are shared by all modes
— R8 through R12 are shared by all modes except Fast Interrupt

Mode which has R8_fiq .. R12_fiq
— All exception modes have their own copies of R13 and R14
— All exception modes have a dedicated Saved Program Status

Register (SPSR)

General Purpose Registers

• R0 through R12 are general purpose registers
— R13 is the stack pointer; each mode has its own

stack
— R14 is the link register, used to store function and

exception return addresses
— R15 is the program counter

ARM Registers Program Status Register

• The CPSR is accessible in all modes.
• CPSR is preserved in SPSR in exception modes
• Upper 16 bits contain user flags

— Condition code flags N,Z,C,V
— Q flag indicates overflow or saturation in SIMD

instructions
— J bit related to Jazelle instructions (allow Java

bytecode to execute directly on the ARM)
— GE bits are set by SIMD instructions (greater than or

equal) for each operand

System Control Flags
— E bit control endianness for data (ignored for code)
— A,I,F are interrupt disable bits.

– A disables imprecise operand data aborts
– I disables IRQ interrupts
– F disables FIQ

— T bit controls normal / Thumb interpretation of
code

— Mode bits indicate processor mode

Interrupt Processing

• ARM supports seven types of exception.
— Vectors for each type are stored at fixed addresses

in low memory 0x00000000 – 0x0000001F (vector at
address 0x00000014 is reserved)

— Multiple interrupts are handled in priority order (0
highest)

• Exception handling:
— Finish current instruction
— Save state of CPSR in SPSR register for exception

mode
— PC (R15) is saved in Link Register (R14) for

exception mode
— Return by copying SPSR back to CPSR and R14 to R15

17

Interrupt
Vectors

