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Chapter 15
Control Unit Operation

Computer Organization and Architecture Micro-Operations

• Execution of an instruction (the instruction 
cycle) has a number of smaller units
— Fetch, indirect, execute, interrupt, etc

• Each part of the cycle has a number of smaller 
steps called micro-operations
— Discussed extensive in pipelining

• Micro-ops are the fundamental or atomic 
operations of the processor

Constituents of Program Execution The Fetch Cycle: 4 Registers

• Memory Address Register (MAR) 
— Connected to address bus
— Specifies address for read or write op

• Memory Buffer Register (MBR) 
— Connected to data bus
— Holds data to write or last data read

• Program Counter (PC) 
— Holds address of next instruction to be fetched

• Instruction Register (IR) 
— Holds last instruction fetched

Fetch Sequence

• Address of next instruction is in PC
— Address (MAR) is placed on address bus
— Control unit issues READ command

• Result (data from memory) appears on data bus
— Data from data bus copied into MBR
— PC incremented by instruction length (in parallel 

with data fetch from memory)

• Data (instruction) moved from MBR to IR
— MBR is now free for further data fetches

Fetch example
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Fetch Sequence (symbolic)

• t1: MAR <- (PC)
• t2: MBR <- (memory)
• PC <- (PC) +1
• t3: IR <- (MBR)
• (tx = time unit/clock cycle)
• or
• t1: MAR <- (PC)
• t2: MBR <- (memory)
• t3: PC <- (PC) +1 
• IR <- (MBR)

Fetch Sequence - Symbolic
• The fetch cycle actually consists of 3 step and 4 micro-

ops
• Each micro-op consists of moving data in or out of a 

register
• Those that do not conflict can be executed in parallel

t1: MAR <- (PC)
t2: MBR <- (memory)

PC <- (PC) +1
t3: IR <- (MBR)

or
t1: MAR <- (PC)
t2: MBR <- (memory)
t3: PC <- (PC) +1 

IR <- (MBR)

Rules for Grouping Micro-ops

• Proper sequence must be followed
— MAR <- (PC) must precede MBR <- (memory)

• Conflicts must be avoided
— Must not read & write same register in same cycle
— MBR <- (memory) & IR <- (MBR) must not be in same 

cycle

• Also  PC <- (PC) +1 involves addition
— Might need to Use ALU
— May need additional micro-operations

Indirect Cycle

• Once the instruction has been fetched we need 
to fetch source operands.
— Assume one-address instruction format with direct 

and indirect addressing allowed
— Indirect cycle (memory at addr contains address of 

operand):
t1: MAR <- (IRaddress)  - address field of IR
t2: MBR <- (memory)
t3: IRaddress <- (MBRaddress)

Now MBR contains direct address of operand

• IR is updated with direct address of operand
• IR is now in same state as if direct addressing 

had been used

Interrupt Cycle

• At end of execute cycle, processor tests 
interrupt signal. If set, an interrupt cycle occurs

t1: MBR <-(PC)
t2: MAR <- save-address

PC <- routine-address
t3: memory <- (MBR)

• This is a minimum. Most processors provide 
multiple types of address
— So there may be additional micro-ops to get addresses
— Note that saving context is done by interrupt handler 

routine, not micro-ops

Execute Cycle (ADD)

• Fetch, Indirect and Interrupt cycles are simple 
and predictable

• Execute cycle is different for each instruction
• We’ll look at several examples
• ADD R1,X - add the contents of location X to 

Register 1 , result in R1
t1: MAR <- (IRaddress)
t2: MBR <- (memory)
t3: R1 <- R1 + (MBR)

• Example is simplified. We may need additional 
micro-ops to get register reference from IR or 
stage ALU input or output in an intermediate 
register
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Execute Cycle (ISZ)

• ISZ X - increment and skip if zero
• Contents of location X are incremented by 1; if 

the result is 0 the next instruction is skipped
— t1: MAR <- (IRaddress)
— t2: MBR <- (memory)
— t3: MBR <- (MBR) + 1
— t4: memory <- (MBR)
— if (MBR) == 0 then PC <- (PC) + 1

• Notes:
— Conditional action (test and increment if 0) is a 

single micro-op
— Can be performed in same time unit as store to 

memory

Execute Cycle (BSA)

• BSA X - Branch and save address
— Address of instruction following BSA is saved in X
— Execution continues from X+1
— A straightforward way to provide subroutine calls 
— But you can get into trouble with recursive calls; 

most modern machines use a stack
t1: MAR <- (IRaddress)

MBR <- (PC)
t2: PC <- (IRaddress)

memory <- (MBR)
t3: PC <- (PC) + 1

Instruction Cycle

• Each phase is decomposed into a sequence of 
elementary micro-ops

• We have one sequence for fetch, indirect, and 
interrupt cycles, but execute cycle has one 
sequence of micro-operations for each opcode

• To complete the picture we need to tie 
sequences together into the instruction cycle
— Assume new 2-bit register; the instruction cycle 

code (ICC) designates which part of cycle processor 
is in

– 00: Fetch
– 01: Indirect
– 10: Execute
– 11: Interrupt

Flowchart for Instruction Cycle

Control of the Processor

• Functional Requirements
— Define the basic elements of the processor
— Describe the micro-operations that the processor 

performs
— Determine the functions control unit must perform 

in order to execute the micro-ops

• We’ve already completed steps 1 and 3

Basic Elements of Processor

• Define the basic elements of the processor:
— ALU
— Registers
— Internal data pahs
— External data paths
— Control Unit
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Types of Micro-operation

• Describe the micro-operations that the 
processor performs
— Transfer data between registers
— Transfer data from register to external interface
— Transfer data from external interface to register
— Perform arithmetic or logical operations using 

registers

Functions of Control Unit

• Control Unit performs two basic tasks
• Sequencing

— Causing the CPU to step through a series of micro-
operations

• Execution
— Causing the performance of each micro-op

• Key to operation is the use of control signals

Model of Control Unit Control Unit Inputs

• Clock
— One micro-op (or set of parallel micro-ops) per clock 

cycle

• Instruction register
— Contains op-code for current instruction
— Determines which micro-ops are performed

• Flags
— Determine state of CPU and results of previous 

operations

• Control signals from control bus
— The control lines from the system bus are input 

signals to the control unit

Control Unit Outputs

• Control signals within the processor
— Cause data movement from reg to reg
— Activate specific ALU functions

• To control bus
— Control signals to memory
— Control signals t
— o I/O modules

Example Control Signal Sequence - Fetch
• MAR <- (PC)

— Control unit activates signal to open gates between PC and 
MAR

• MBR <- (memory) uses these simultaneous signals
— Open gates between MAR and address bus (places MAR on 

address bus)
— Memory read control signal is sent on the control bus
— Open gates between data bus and MBR, allowing contents of 

data bus to be stored in MBR
— Control signals to PC increment logic circuit

• After this is complete the control unit examines IR to 
determine whether to perform an indirect cycle or an 
execute cycle
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Control Signals Example

• This model is a simple processor that has one 
register AC (accumulator)

• Diagram indicates data paths between 
elements
— Terminations of control signals are labeled Cn and 

indicated by a circle
— Inputs are clock, flags, IR

• With each clock cycle the control unit reads all 
of its inputs and emits a set of control signals

Data Paths and Control Signals

Control Signal Destinations

• Data paths
— Switching & connecting data sources to destinations; 

e.g., connect IR to MBR on instruction fetch

• ALU
— Signals activate various logic circuits in ALU

• System Bus
— Control signals such as memory read or write

Control Signals for Fetch, Interrupt, Indirect

Internal Organization

• Control signals diagram shows a variety of data 
paths in a very simple processor
— Complexity would be to high in any real processor to 

have hardwired data paths
— Usually a single internal bus is used
— Gates control movement of data onto and off the 

bus

• Control signals control data transfer to and 
from external systems bus

Alternate Organization with Internal Bus
• Two new registers Y and Z have been 

added for proper operation of ALU
• Y is the input and Z the output

— The ALU is a combinatorial circuit with no 
internal storage

— When control signals are applied the input is 
transformed to the output

— It is not connected directly to the bus because 
the output would feed back to the input

• Micro-ops for Add to Memory
T1: MAR <- (IR(address))
T2: MBR <- Memory
T3: Y <- (MBR)
T4: Z <- (AC) + (Y)
T5: AC <- (Z)
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The Intel 8085

• An 8-bit microprocessor produced in 1977
• Some key components that may not be obvious:

— Incrementer/Decrementer address latch: add or 
subtract 1 from SP or PC. Saves time by not using ALU

— Interrupt Control: handles multiple levels or interrupt 
signals

— Serial I/O control: interface for serial devices (1 bit 
at a time)

Intel 8085 CPU Block Diagram

8085 External Signals - 1 8085 External Signals - 2

Intel 8085 Pin 
Configuration Control Unit

• Two components
— Instruction decoder / machine cycle encoding
— Timing and control

• Essence is Timing and Control
— Inputs are clock, current instruction and some 

control signals
— Outputs are control signals to processor and 

external bus
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Instruction Timing

• Timing is synchronized by the clock
— Instruction cycle is divided into 1 to 5 machine 

cycles depending on instruction
— Each machine cycle is divided into 3 to 5 states
— Each state lasts one clock cycle 
— Processor performs one or more parallel micro-ops 

per state (determined by control signals)
— Machine cycles are defined to equivalent to bus 

accesses
– Determined by number of processor communicates with 

external devices
– Ex: 16-bit read mem instruction needs two cycles to fetch 

instruction plus one cycle for execution
– Compare with modern processors where bus is much slower 

than CPU

Intel 8085 OUT Instruction
Timing Diagram

External Control Signals Examples

• Instruction is OUT byte (output to IO device); 3 
machine cycles
1. Instruction opcode is fetched
2. 2nd half of instruction is fetched with I/O address
3. Contents of AC written out to device over data bus

Machine Cycle Detail M1
— Address Line Enable (ALE) signal start of each 

machine cycle; alerts external circuits
— In state t1 of m1 control unit set IO/M to indicate 

memory op
– Contents of PC placed on address bus and address/data 

bus
– With falling edge of ALE other devices latch (store) the 

addr

— Timing state T2 the memory module places 
contents of memory location on addr/data bus
– Control unit sets RD signal to indicate a read but waits 

until T3 to copy the data 
– Gives memory module time to put the data on the bus and 

stabilize signal levels

— State T3 is bus idle state during which processor 
decodes the instruction

Implementation

• Control unit design techniques are either
— hardwired 
— Or microprogrammed

• In a hardwired implementation the control unit 
is a state machine

• Input logic signals are transformed into output 
signals (control signals)

Hardwired Implementation (1)

• Control unit inputs:
— Flags and control bus

– Each bit means something

— Instruction register not directly useful to the unit
– Op-code causes different control signals for each different 

instruction
– Unique logic for each op-code
– Decoder takes encoded input and produces single output
– n binary inputs and 2n outputs
– Each of the 2n input patterns will produce a unique output

— Example shows a very simple 4-bit decoder
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Decoder with 4 inputs and 16 outputs Hardwired Implementation (2)

• Clock
— Repetitive sequence of pulses
— Useful for measuring duration of micro-ops
— Must be long enough to allow signal propagation
— Different control signals at different times within 

instruction cycle
— Need a counter with different control signals for t1, 

t2 etc.

Control Unit with Decoded Inputs Operation of Control Unit
• For each control signal, derive a Boolean expression of 

signal as function of inputs
• Consider logical view of control unit data paths discussed 

earlier
• Look at control signal C5

— Causes data to be read from external device into MBR
— Used by fetch T2 and indirect T2; sometimes by Execute

• We define two new control signals P and Q that are 
interpreted as 

PQ = 00 Fetch cycle
PQ = 01 Indirect cycle
PQ = 10 Execute cycle
PQ = 11 Interrupt cycle

Boolean expression for C5

• The following expression defines C5 for fetch 
and indirect
C5 = (~P ^ ~Q ^ T2) | (~P ^ Q ^ T2)

• For execute, we need a control signal for each 
instruction 

• Assume we have three instructions that read 
from memory (LDA, ADD, AND)
C5 = (~P^~Q^T2) | (~P^Q^T2) 

| (P^~Q^(LDA | ADD | AND)^T2)
• Repeat this process for each control signal 
• Result is a set of Boolean equations that define 

the behavior of the control and therefore the 
processor

Data Paths and Control Signals
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Usage of control signals Problems With Hard Wired Designs

• Complex sequencing & micro-operation logic
• Difficult to design and test

— With modern processors the number of Boolean 
equations is huge and implementation of 
combinatorial circuit is very difficult

• Inflexible design
— Difficult to add new instructions

• Microprogramming offers a simpler and easier 
approach


