Computer Organization and Architecture
T O 7 7) I e

Chapter 15
Control Unit Operation

Micro-Oeerations

= Execution of an instruction (the instruction
cycle) has a number of smaller units
—Fetch, indirect, execute, interrupt, etc

= Each part of the cycle has a number of smaller
steps called micro-operations
— Discussed extensive in pipelining

* Micro-ops are the fundamental or atomic
operations of the processor

Constituents of Program Execution

’ Program Execution |

|lnstruclion Cycle | Instruction Cycle

Fetch | Indirect | Execute | |lnlern|pl|

AL

The Fetch Cxcle: 4 Reﬁisters

= Memory Address Register (MAR)
— Connected to address bus
— Specifies address for read or write op
= Memory Buffer Register (MBR)
— Connected to data bus
— Holds data to write or last data read
= Program Counter (PC)
— Holds address of next instruction to be fetched
= Instruction Register (IR)
— Holds last instruction fetched

Fetch Sequence

= Address of next instruction is in PC
— Address (MAR) is placed on address bus
— Control unit issues READ command

« Result (data from memory) appears on data bus
— Data from data bus copied into MBR

—PC incremented by instruction length (in parallel
with data fetch from memory)

= Data (instruction) moved from MBR to IR
—MBR is now free for further data fetches

Fetch examﬁle

MAR MAR [0000000001100100
MBR MBR
PC [0000000001100100 PC [0000000001100100
R R
AC AC
(a) Beginning (before t;) (b) After first step
MAR 0000000001100100 MAR | 0000000001100100
MBR 0001000000100000 MBR | 0001000000100000
PC 0000000001100101 PC [0000000001100101
R IR [0001000000100000
AC AC
(¢) After second step () After third Step

Fetch Seﬁuence ‘sxmbolic:

e t1: MAR <- (PC)

* t2: MBR <- (memory)

. PC <- (PC) +1

« t3: IR <- (MBR)

* (tx = time unit/clock cycle)
. or

e t1: MAR <- (PC)

* t2: MBR <- (memory)

* t3: PC <- (PC) +1

. IR <- (MBR)

Fetch Sequence - Symbolic

« The fetch cycle actually consists of 3 step and 4 micro-
ops

= Each micro-op consists of moving data in or out of a
register

« Those that do not conflict can be executed in parallel

tl: MAR <- (PC)
t2: MBR <- (memory)
PC <- (PC) +1
t3: IR <- (MBR)
or
tl: MAR <- (PC)
t2: MBR <- (memory)
t3: PC <- (PC) +1
IR <- (MBR)

Rules for Groueing Micro-oes

* Proper sequence must be followed
—MAR <- (PC) must precede MBR <- (memory)
= Conflicts must be avoided
— Must not read & write same register in same cycle
—MBR <- (memory) & IR <- (MBR) must not be in same
cycle
* Also PC <- (PC) +1 involves addition
— Might need to Use ALU
— May need additional micro-operations

Indirect Cxcle

= Once the instruction has been fetched we need
to fetch source operands.
— Assume one-address instruction format with direct
and indirect addressing allowed
— Indirect cycle (memory at addr contains address of
operand):
t1: MAR <- (IRy4qress) - address field of IR
t2: MBR <- (memory)
132 IRygiress <~ (MBRuggress)
Now MBR contains direct address of operand

< IR is updated with direct address of operand

= IR is now in same state as if direct addressing
had been used

Interruet Cxcle

= At end of execute cycle, processor tests
interrupt signal. If set, an interrupt cycle occurs
tl: MBR<-(PC)
t2: MAR <- save-address
PC <- routine-address
t3: memory <- (MBR)
* This is a minimum. Most processors provide
multiple types of address
— So there may be additional micro-ops to get addresses

— Note that saving context is done by interrupt handler
routine, not micro-ops

Execute Cycle (ADD

« Fetch, Indirect and Interrupt cycles are simple
and predictable

= Execute cycle is different for each instruction

= We’ll look at several examples

e ADD R1,X - add the contents of location X to
Register 1 , result in R1
t1: MAR <- (IR ygress)
t2: MBR <- (memory)
t3: R1 <-R1 + (MBR)

= Example is simplified. We may need additional
micro-ops to get register reference from IR or
stage ALU input or output in an intermediate
register

Execute Cycle (I1SZ

* ISZ X - increment and skip if zero
= Contents of location X are incremented by 1; if
the result is 0 the next instruction is skipped
—tl: MAR <- (IRyqqress)
—1t2: MBR <- (memory)
—t3: MBR <- (MBR) + 1
—t4: memory <- (MBR)
— if (MBR) == 0 then PC <- (PC) + 1
= Notes:
— Conditional action (test and increment if 0) is a
single micro-op

— Can be performed in same time unit as store to
memory

Execute Cxcle ‘ BSAE

BSA X - Branch and save address
— Address of instruction following BSA is saved in X
— Execution continues from X+1
— A straightforward way to provide subroutine calls
— But you can get into trouble with recursive calls;
most modern machines use a stack
tl: MAR <- (IRyqeiess)
MBR <- (PC)
t2: PC <- (IRaggress)
memory <- (MBR)
t3: PC<- (PC) +1

Instruction Cycle

= Each phase is decomposed into a sequence of
elementary micro-ops

= We have one sequence for fetch, indirect, and
interrupt cycles, but execute cycle has one
sequence of micro-operations for each opcode

* To complete the picture we need to tie
sequences together into the instruction cycle

— Assume new 2-bit register; the instruction cycle
code (ICC) designates which part of cycle processor
isin

- 00: Fetch

- 01: Indirect
- 10: Execute
- 11: Interrupt

Flowchart for Instruction Czcle

11 (interrupt) / 1cc? \ 00 (fetch)

Setup
interrupt

11 indirect

Read
address

10 (execute)

Fetch
intstruction

Execute
instruction

Interrupt
for enabled
interrupt?

Yes,

Control of the Processor

= Functional Requirements
— Define the basic elements of the processor

— Describe the micro-operations that the processor
performs

— Determine the functions control unit must perform
in order to execute the micro-ops

* We’ve already completed steps 1 and 3

Basic Elements of Processor

Define the basic elements of the processor:
—ALU

— Registers

— Internal data pahs

— External data paths

— Control Unit

TXEGS of Micro-oeeration

= Describe the micro-operations that the
processor performs
— Transfer data between registers
— Transfer data from register to external interface
— Transfer data from external interface to register
— Perform arithmetic or logical operations using
registers

Functions of Control Unit

= Control Unit performs two basic tasks
= Sequencing
— Causing the CPU to step through a series of micro-
operations

= Execution
— Causing the performance of each micro-op

= Key to operation is the use of control signals

Model of Control Unit

Instruction register

Control signals

e within CPU 2
. 3
Flags a
? Control signal 2
— > ontrol signals =
Control from control bus S
Unit <
Clock m——p| >
Control signals
to control bus

Control Unit Inﬁuts

« Clock
— One micro-op (or set of parallel micro-ops) per clock
cycle
= Instruction register
— Contains op-code for current instruction
— Determines which micro-ops are performed
* Flags
— Determine state of CPU and results of previous
operations
= Control signals from control bus

— The control lines from the system bus are input
signals to the control unit

Control Unit Outﬁuts

= Control signals within the processor
— Cause data movement from reg to reg
— Activate specific ALU functions

= To control bus
— Control signals to memory
— Control signals t
—o0 1/0 modules

Examele Control Siﬁnal Seﬁuence - Fetch

e MAR <- (PC)
— Control unit activates signal to open gates between PC and
MAR
* MBR <- (memory) uses these simultaneous signals
— Open gates between MAR and address bus (places MAR on
address bus)
— Memory read control signal is sent on the control bus
— Open gates between data bus and MBR, allowing contents of
data bus to be stored in MBR
— Control signals to PC increment logic circuit
« After this is complete the control unit examines IR to
determine whether to perform an indirect cycle or an
execute cycle

Control Signals ExamEIe

= This model is a simple processor that has one
register AC (accumulator)

= Diagram indicates data paths between
elements

— Terminations of control signals are labeled C, and
indicated by a circle

— Inputs are clock, flags, IR
= With each clock cycle the control unit reads all
of its inputs and emits a set of control signals

Data Paths and Control Signals

Control Signal Destinations

= Data paths

— Switching & connecting data sources to destinations;
e.g., connect IR to MBR on instruction fetch

= ALU

— Signals activate various logic circuits in ALU
= System Bus

— Control signals such as memory read or write

Internal Orﬁanization

= Control signals diagram shows a variety of data
paths in a very simple processor

— Complexity would be to high in any real processor to
have hardwired data paths

— Usually a single internal bus is used
— Gates control movement of data onto and off the
bus
= Control signals control data transfer to and
from external systems bus

l—
- Control
© signals

l—
Control .
unit .
le—
Control
signals
Control Signals for Fetch, Interrupt, Indirect
Micro-operations Active Control
Signals
t;: MAR — (PC) <
Feteh: LR e (e(e
PC— (PC) +1
1 IR — (MBR) @
t;: MAR - (IR(Address)) Cg
Indirect: t,- MBR — Memory Gl
ty: IR(Address) — (MBR(Address)) C,
t;: MBR — (PC) &
t,: MAR « Save-address
teupe * PC — Routine-address
ty Memory — (MBR) CCh
Cy = Read control signal to system bus
Cy = Write control signal to system bus
Alternate Organization with Internal Bus
* Two new registers Y and Z have been
added for proper operation of ALU
- Y is the input and Z the output LT g
— The ALU is a combinatorial circuit with no
internal storage .
— When control signals are applied the input is Address [
transformed to the output tnes] .
— It is not connected directly to the bus because - [wer §
the output would feed back to the input ° ofs

* Micro-ops for Add to Memory ﬁ

T1: MAR <- (IR(address)) °
T2: MBR <- Memory
T3: Y <- (MBR)

T4: Z < (AC) + (Y)

T5: AC <- (2)

The Intel 8085

= An 8-bit microprocessor produced in 1977
« Some key components that may not be obvious:
— Incrementer/Decrementer address latch: add or
subtract 1 from SP or PC. Saves time by not using ALU
— Interrupt Control: handles multiple levels or interrupt
signals
— Serial 170 control: interface for serial devices (1 bit
at a time)

Intel 8085 CPU Block Diaﬁram

8-bit internal data bus.

register
array

Pawer{+5v-.
Supply TGND Timing and control |
X
x‘: Clk
277 Gen Comrol S(alus DMA Resel buffer

cxxomT R‘DWR ALE s.,s‘ IomT THLDA Resel out

AD; - AD,
Ready Hold, ‘Reselin sl s adrotaidalt i

8085 External Siﬁnals -1

‘Address and Data Signals

High Address (A15-A8)
The high-order 8 bits of a 16-bit address.
Address/Data (AD7-AD0)
., Toelover-onder 8 bitsof u 16-it addess o 8 s of ate. This mulplering saves on

Serial Input Data (SID)

A single-bit input to accommodate devices that transmit serially (one bit at a time).
Serial Output Data (SOD)

A single-bit output to accommodate devices that receive serially

Timing and Control Signals
CLK (OUT)

The system clock. The CLK signal goes to peripheral chips and synchronizes their

timing
X1,X2

‘These signals come from an external crystal or other device to drive the internal clock.
generator.

Address Latch Enabled (ALE)

Occurs during the first clock state of a machine cycle and causes peripheral chips to store
the address lines. This allows the address module (e.g., memory, UO) to recognize that it is
‘eing addressed.

Status (S0, S1)

Control signals used to indicate whether a read or write operation is taking place.

10M

Used to enable either /O or memory modules for read and write operations.

Read Control (RD)

Indicates that the selected memory or /O module is to be read and that the data bus is

available for data transfer.
Write Control (WR)

Indicates that data on the data bus is to be written into the selected memory or 'O

location_

8085 External Siﬁnals -2

Memory and 1/0 Initiated Symbols

Hold
Requests the CPU to relinguish control and use of the extemmal system bus. The CPU will
complete execution of the instruction presently in the IR and then enter a hold state, during which no
signals ate inserted by the CPU to the control, address, or data buses. During the hold state, the bus
may be used for DMA operations.
Hold Acknowledge (HOLDA)
the HOLD signal and that the bus is now

available.
READY
Used to synchronize the CPU with slower memory or O devices. When an addressed device
asserts READY., the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise.
the CPU enters a wait state until the device is ready.

Interrupt-Related Signals
TRAP

Restart Interrupts (RST7.5,6.5,5.5)
Tnterrupt Request (INTR)

These five lines are used by an external device to interrupt the CPU. The CPU will not honor the
request if it is in the hold state or if the interrupt is disabled. An interrupt is honored only at the
completion of an instruction. The interrupts are in descending order of priority.

Tnterrupt Acknowledge

Acknowledges an interrupt.
CPU Iniialization
RESETIN
Causes the contents of the PC to be set to zero. The CPU resumes execution at location zeo.
RESET OUT

Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system

Voltage and Ground
vee
+5-volt power supply
vss
Electrical pround

Intel 8085 Pin i« :Ec; ‘;0 \}-/lg:LD
T 1 2
%Re“‘ out <—{(g - Hoa
SOD w—{|4 3 CLK (out]
SID —»{5 3 Resetin
Trap <€—{|6 3 Ready
RST 7.5 —»{]7 3 oM
RST 6.5 «—{|8 3 Sy
RST 5.5 —9{]9 32 Vpp
INTR —9{]10 31 RD
INTA <11 3 WR
AD, {12 2 So
AD, «»{|13 28 Ats
AD, «»{|14 2 Ay
AD; «»{|15 2 Ass
AD, «»{|16 2 Atz
AD; {17 2 A
ADg «»{]18 2 Ao
AD; «»{|19 22) Ag
Vss —{]20 21 Ag

Control Unit

= Two components
— Instruction decoder / machine cycle encoding
— Timing and control
= Essence is Timing and Control
— Inputs are clock, current instruction and some
control signals
— Outputs are control signals to processor and
external bus

Instruction Timin

= Timing is synchronized by the clock

— Instruction cycle is divided into 1 to 5 machine
cycles depending on instruction

— Each machine cycle is divided into 3 to 5 states
— Each state lasts one clock cycle

— Processor performs one or more parallel micro-ops
per state (determined by control signals)

— Machine cycles are defined to equivalent to bus
accesses

- Determined by number of processor communicates with
external devices

- Ex: 16-bit read mem instruction needs two cycles to fetch
instruction plus one cycle for execution

- Compare with modern processors where bus is much slower
than CPU

Intel 8085 OUT Instruction

Timing Diaﬁram

OUTbyte
[M, M,
T T T, T, T T A T P
R W Wan Wan Wan Wan _/__/__/ﬂL/_\L_/_\
Aa-a X C,, b 4 C, 10 PORT |
- N ——
AD, =D, _ [X PG y-—-(ONSIR PC, y=m=={ byte »==t(i0 FORT ACCUM
e My
I]
RD —\ m——y
WR _/—
10/M
| PCOut_[PCo1—pq]| Instr = IR X PCOUt [PCo1PClbyle+Z W[WZOut A—1t— Port
! Instruction fetch 1 Memory read | Output write ———1

External Control Siﬁnals Examﬁles

« Instruction is OUT byte (output to 10 device); 3
machine cycles
1. Instruction opcode is fetched
2. 2 half of instruction is fetched with 1/0 address
3. Contents of AC written out to device over data bus

Machine Cycle Detail M1

— Address Line Enable (ALE) signal start of each
machine cycle; alerts external circuits
— In state t1 of m1 control unit set 10/M to indicate
memory op
- Contents of PC placed on address bus and address/data
bus
- With falling edge of ALE other devices latch (store) the
addr
— Timing state T2 the memory module places
contents of memory location on addr/data bus
- Control unit sets RD signal to indicate a read but waits
until T3 to copy the data
- Gives memory module time to put the data on the bus and
stabilize signal levels
— State T3 is bus idle state during which processor
decodes the instruction

Imelementation

= Control unit design techniques are either
— hardwired
— Or microprogrammed

= In a hardwired implementation the control unit
is a state machine

= Input logic signals are transformed into output
signals (control signals)

Hardwired Imﬁlementation ‘1:

= Control unit inputs:
— Flags and control bus
- Each bit means something
— Instruction register not directly useful to the unit
- Op-code causes different control signals for each different
instruction
- Unique logic for each op-code
- Decoder takes encoded input and produces single output
- n binary inputs and 2" outputs
- Each of the 2"input patterns will produce a unique output
— Example shows a very simple 4-bit decoder

Decoder with 4 inEuts and 16 outEuts

°
Q
2
2
g
2
e
2
2
g
g
e
2
2
)

P) o o)]) o))
= =|o|o|e|e|=|~|~|~|o|le|e|elr
oo =|o|o|=|~lo|lo|=|=|o|lelx
HEEEEEEEEEEEEEEE
IS)P) P P) P
5 S)) S S
slo|=|ole|s|o]e|e|o]o]o]o]s|e]o
olo|e|~[o|a|o|e|a|e|e|o|oa|s|e|e
S S)) S S P S Y
slo|e|ele|~[o]e]e|o]o]o]e]|o]e

Hardwired Imﬁlementation ‘2:

* Clock

— Repetitive sequence of pulses

— Useful for measuring duration of micro-ops

— Must be long enough to allow signal propagation

— Different control signals at different times within
instruction cycle

—Need a counter with different control signals for t1,
t2 etc.

Control Unit with Decoded InEuts

o Iy |
v v
—T—>]
- > | &—
Clock Timing TZ Control .
oc > generator s Unit Flags
—T,—>] [e—
Co G Cn
\/ \

Oeeration of Control Unit

= For each control signal, derive a Boolean expression of
signal as function of inputs

= Consider logical view of control unit data paths discussed
earlier

« Look at control signal C5
— Causes data to be read from external device into MBR
— Used by fetch T2 and indirect T2; sometimes by Execute

* We define two new control signals P and Q that are
interpreted as

PQ =00 Fetch cycle
PQ =01 Indirect cycle
PQ =10 Execute cycle
PQ =11 Interrupt cycle

Boolean expression for C5

= The following expression defines C5 for fetch
and indirect
C5=(-PA~QA"T2) | (-PAQAT2)

« For execute, we need a control signal for each
instruction

« Assume we have three instructions that read
from memory (LDA, ADD, AND)
C5 = (~PA~QAT2) | (~PAQAT2)

| (P*~Q™(LDA | ADD | AND)"T2)

= Repeat this process for each control signal

= Result is a set of Boolean equations that define
the behavior of the control and therefore the
processor

Data Paths and Control Signals

- Control
- signals

Control
unit

¢Con!ro+

signals

Pt

Usage of control siﬁnals Problems With Hard Wired Desiﬁns
- i e = Complex sequencing & micro-operation logic
Micro-operations ctive Contro L)
sl = Difficult to design and test
t;: MAR — (PC) [.
o t, MBR — Memory . — With modern processors the number of Boolean
‘etch: o3 - . - - .
PC—(®C)+1 o equations is huge and implementation of
SR D) G combinatorial circuit is very difficult
t): MAR — (IR(Address)) Cq . .
Rt O s G = Inflexible design
5 s SR — Difficult to add new instructions
t): MBR — (PC) &
_— 152 MAR — Save-addess = Microprogramming offers a simpler and easier
i PE — Rouiicddrcns h
t3: Memory — (MBR) e approac
G = Read control signal to system bus.
Cy = Write control signal to system bus.

