
COS 480/580 Fall 2006 HW02 (200 pts.) Due 2006-10-24 12:30
c© Sudarshan S. Chawathe 2006

This programming assignment should be submitted electronically by following the instruc-
tions on page 7. You are welcome, and encouraged, to use any resources, such as Web sites,
to help you with your work. However, all such help must be clearly noted in your submissions.
Further, no matter what you use, you must be able to explain how and why it works.

For this homework, functions marked with ? are required for COS 580 students only.
The main programming task described below is worth 200 points. For COS 480 students,
any points earned on ? functions (potentially another 50 points) are simply added to the
score. If the resulting score is greater than 200, the remaining points are extra credit. COS
580 students must implement all functions to yield a raw score (maximum 250) that will be
scaled by 4/5 to obtain the score (maximum 200) on the homework. (COS 580 students who
wish to work for extra credit should contact me for a suitable assignment.)

Goal: This assignment asks you to build a small database application for managing in-
formation related to trees. The main goal of this assignment is to gain experience using
one or more application programming interfaces (APIs) to PostgreSQL. Secondary goals in-
clude practice in writing SQL queries and a study of the impact of database design on ease
of querying and updating data, and on maintaining database consistency. Hopefully, this
homework will provide a concrete motivation for these topics, which we will study soon.

The Programming Environment: An important part of this assignment is learning the
interface between a typical programming environment and the database system. You are free
to use a programming language and database interface library of your choice. However, only
C (with embedded or dynamic SQL) and Java (with JDBC) are supported. While we will
try to help you with other languages and libraries, you should not assume any particulars
without first checking with me. Figuring out the details of the database system interface
and the necessary libraries usually takes people a lot longer than they expect, so please start
working on at least this part early.

Database Tables: The application uses the two database tables Trees and Places from
the previous assignment, with the following changes:

1. The Trees table should include a column named features that holds a textual de-
scription of distinguishing features of each tree, such as the following description from
the Maine Tree Club1: “The Pitch Pine is the only 3-needled pine found in the North.
Needles are usually twisted and grow at right angles to the branchlets. Needles can
also grow in tufts from the trunk.”

1Maine Tree Species Fact Sheets, Maine Tree Club. http://www.umaine.edu/umext/mainetreeclub/

September 2006.

1



2. The Places table should include a column named area that holds the area of each
place in square miles.

3. Each of Trees and Places should include a column named id that uniquely identifies
rows in the that table.

We also use two additional tables:

1. Individuals(id, botname, location, dia, height, mdate). Each row in this ta-
ble represents an individual tree, with the columns representing, in order, an attribute
that uniquely identifies an individual tree, the botanical name of the tree species, a
short textual description of the individual’s location (e.g., “20 feet from the library
entrance”), its trunk diameter in inches, its height in feet, and the date of these mea-
surements.

2. OSchedule(id, obs, indid, odatetime). Each row in this table represents a sched-
uled observation, with the columns representing, in order, a unique identifier for the
scheduled observation, the name of the observer (person), the individual tree to be
observed (identified using the id attribute of Individuals), and the date and time of
the scheduled observation.

Choose appropriate types for the columns of these tables. Unless otherwise specified, you
may assume that all string-valued attributes contain at most 100 characters. Exception are
the features attribute of Trees and the location attribute of Individuals, which may
each contain up to 100,000 characters.

The Application Program: As described further in the packaging instructions below,
your submission should produce (not contain) an executable file called treedb, that uses
PostgreSQL to implement the application described below. You must implement your appli-
cation program as a Unix command-line program that reads from standard input and writes
to standard output. Your program will be tested and graded on Gandalf. If you use some
other machine for development, please check very carefully that your code runs on Gandalf.
This application must implement the user functions described below. When the work (both
internal processing and output to user) for each function is done, your application should
write (to standard output) five dashes (-----) followed by a single newline character. We
will refer to this string of five dashes followed by a newline as the function termination
string. The following description also refers to a separator string, which consists of the
three-character sequence space-colon-space. We will assume that the separator string is not
a substring of any valid string input to this application. Except the output described in this
homework, your program should not produce any extra output, such as diagnostic messages.

These functions will be invoked from standard input by listing the function name followed
by its arguments, one per line. For example, the connect function described below takes two
arguments and may be invoked as follows:

2



connect

bigmoose

xyzzy

String arguments will be listed verbatim, with no quotes or other demarcation. You may
assume that function arguments do not contain any newline characters. Integers will be
listed in conventional format (e.g., 123, 74). You may assume that all numbers are in the
range [0 . . . 105]. Date-time values are in UTC, with the format YYYY-MM-DD HH:MM:SS.
For example, 2006-09-27 19:04:09 denotes nine seconds past 7:04 p.m. on the 27th of
September, 2006, UTC (i.e., 3:04:09 p.m. EDT).

The input will contain, in general, several function calls in the above format, listed one
after the other. Your program should ignore lines with # (pound sign) as the first character.
It should also ignore blank lines, but blank lines separating function invocations are not

required. Since you know the number of arguments each function takes, there is no need for
such separation. (Note that the function termination string is used only for output, not in
the input.) Your application should read and process the functions in the order in which
they appear in the input and should terminate gracefully (e.g., by closing open database
connections) when the end of input is reached. There is no special end-of-input marker. You
are encouraged, but not required, to provide any error-handling features; your program will
only be tested on valid input.

Functions: The functions that your program should implement are described below. Note
that the descriptions use a conventional functional notation of the form f(a, b), but the input
is presented in the form described above.

connect(u, p): This function will be the first one invoked in any test run, and it will
be invoked exactly once per run. In response, your application should perform all necessary
initialization and connect to the database server as user u with password p. Strictly speaking,
your program need not perform any of these actions, since its observable behavior for this
function does not depend on them. However, it is probably a good idea.

We will test your program using a temporary account u that is not your class account.
You may assume that the database for account u initially contains no user tables. Make sure
you do not assume anything specific to your own class account. For example, you cannot
rely on any initialization you have in your .login or .bashrc files, since these files will
not be the same for the test account. Please be sure to understand the implications of this
requirement. Creating code that can be easily run by someone else is an important part of
this homework. For testing, you should use your own account name and password in place
of u and p. You may wish to test your submission by temporarily replacing your customized
account files, if any, with the default ones that came with your account.

createTables(): This function should result in the creation of all the database tables
required by this application, as described on page 1. This function will be called before any
of the functions below. It does not return any results.

3



destroyTables(): This function should cause the removal of the database tables created
by createTables. After destroyTables, the database should be in its initial pristine
state (with no user tables). You may assume that after this function is called, a call to
createTable will precede a call to any of the functions described below. This function does
not return any results.

addTree(n,b,t,d,h,m,x): When this function is invoked, your application should add a
row (n, b, t, d, h, m, x, i) to the Trees table, where n, b, t, d, h, m, and x denote, respec-
tively, the common name, botanical name, tree type, typical trunk diameter, typical height,
minimum zone, and maximum zone, and where i is an identifier of your program’s choosing.
(See the note on identifiers below.) The output of this function is the identifier i.

findTree(s): This function should search for trees for which s occurs as a substring of
either common name or botanical name (or both). This search, and all searches on string-
valued attributes, should be case-insensitive unless specified otherwise. The matching tree
records should be printed one per line. Each line should contain the tree’s identifier (see
above), common name, and botanical name, separated using the separator string described
earlier (page 2). The output should be sorted in ascending lexicographic order of botanical
name (case insensitive). Output lines here and elsewhere should be terminated by a single
newline character.

describeTree(i): This function should print descriptive information about the tree iden-
tified by the given identifier i (exact, case-sensitive string match). If there is no tree with
identifier i, no output should be produced and this condition is not an error. If the tree
identified by i exists, the following information should be printed on a single line (in this
order): common name, botanical name, minimum zone, and maximum zone.

For this and other functions, attribute values and other items printed on an output line
should be separated using the separator string described earlier (page 2). Strings should be
printed literally (with no quotes, padding, or other artifacts). Integers and dates should be
printed in the format used for the input.

addPlace(c,s,p,z,y,l): When this function is invoked, your application should add a row
(c, s, p, z, y, l, j) to the Places table, where c, s, p, z, y, and l denote, respectively, the city,
state, population, zone, subzone, and minimum temperature, and where j is an identifier
similar to that used in addTree. The output of this function is the identifier j.

addIndividual(k,b,l,d,h,m): When this function is invoked, your application should add
a row (k, b, l, d, h, m) to the Individuals table, where k is an identifier generated as in
addTree, and b, l, d, h, and m denote values for the remaining columns of the Individuals

table in the order they were introduced earlier. The output of this function is the identifier
k.

4



addOSchedule(o,i,d): When this function is invoked, your application should add a row
(l, o, i, d) to the OSchedule table, where l is an identifier generated as in addTree, and o,
i, and d denote values for the remaining columns of the OSchedule table in the order they
were introduced earlier. The output of this function is the identifier l.

Note on Identifiers: The identifiers generated by your program in response to the addTree,
addPlace, and addIndividual functions must uniquely identify the rows in the respective
tables. Your application is responsible for generating and managing these identifiers. Once
your application has exposed a tree’s identifier (by printing it as output), the identifier may
be presented as an argument of the describeTree function at any point in the future. These
identifiers must persist between sessions. For example, if your program exposes a tree identi-
fier xyzzy182 during one session a describeTree function call with xyzzy182 as the argument
must produce details of the corresponding record. Unless this record has been deleted or oth-
erwise modified in the interim, the output of this descrbeTree function invocation should be
the same as if it had been invoked in the original session. All matching for identifiers should
be exact. (If you use strings as identifiers, the match should be case-sensitive, exact string
match, for example.) There are similar constraint on identifiers in the Places, Individuals,
and OSchedule tables: Once exposed, they must permit lookup using the describePlace,
describeIndividual, and describeSchedule functions introduced below.

describePlace(j): This function should print descriptive information about the place
identified by the identifier j (exact, case-sensitive string match). If there is no place match-
ing identifier j, no output should be produced and this condition is not an error. If the place
identified by j exists, the following information should be printed on a single line (in this
order): city, state, population, zone, subzone, and minimum temperature.

describeIndividual(k): This function is to the Individuals table what describePlace
is to the Places table. The output, if any, consists of the values of the columns of the
Individuals table, in the order they were introduced earlier.

describeSchedule(i): This function is to the OSchedule table what describePlace is to
the Places table. The output, if any, consists of the values of the columns of the OSchedule
table, in the order they were introduced earlier.

addOScheduleX(o,i,p): This function is similar to addOSchedule, differing only in how
the time (and date) of the scheduled observation is specified. Instead of it being specified
explicitly, it is specified using a time-pattern p as described below. An noted below, a single
invocation of this function may result in the creation of several scheduled observations,
unlike the addOSchedule function, which always creates one scheduled observation. The
other arguments, o and i, are treated as in addOSchedule. Recall that all times are in UTC.

5



The scheduled observation times are based on interpreting the time-pattern p as a
crontab2 expression. The expression p consists of five fields (minute, hour, day of month,
month, and day of week) separated by whitespace. The following excerpt (slightly modified)
from the crontab manual describes the semantics.

[A timestamp matches p] when the minute, hour, and month of year fields match
the current time, and when at least one of the two day fields (day of month, or
day of week) match the current time. The time and date fields are:

field allowed values
minute 0–59
hour 0–23

day of month 1–31
month 1–12 or names

day of week 0–7 (0 and 7 mean Sun.)
[year integer year of Gregorian calendar]

A field may be an asterisk (*), which always stands for “first–last.”

Ranges of numbers are allowed. Ranges are two numbers separated with a hy-
phen. The specified range is inclusive. For example, 8-11 for an “hours” entry
specifies [a reservation] at hours 8, 9, 10 and 11. [Similarly, 2006-2007 specifies
a reservation for years 2006, 2006, and 2007 A.D. We will assume a temporal
granularity of one minute. Thus the time-pattern * * 1 1 * 2006 specifies the
time points marking each minute of each hour of January 1st, 2006 (a total of
60 × 60 points in time.]

Lists are allowed. A list is a set of numbers (or ranges) separated by commas.
Examples: “1,2,5,9”; “0-4,8-12.”

Step values can be used in conjunction with ranges. Following a range with
“/<number>” specifies skips of the number’s value through the range. For exam-
ple, “0-23/2” can be used in the hours field to specify command execution every
other hour (the alternative in the V7 standard is “0,2,4,6,8,10,12,14,16,18,
20,22”). Steps are also permitted after an asterisk, so if you want to say “every
two hours,” just use “*/2.”

Names can also be used for the “month” and “day of week” fields. Use the first
three letters of the particular day or month (case doesn’t matter). Ranges or
lists of names are not allowed.

A single invocation of addOScheduleX results in the creation of several scheduled observations
(several entries in the OSchedule table). We will refer to this group of scheduled observations
created by a addOScheduleX invocation as a observation group. For example, the following
invocation results in 24 scheduled observations for January 15th, 2007 for the first 10 minutes
of each hour of that day:

2Paul Vixie, crontab—tables for driving cron, Manual, 4th Berkeley Distribution January 1994.

6



addOScheduleX(Alice, t101ab, 0 * 15 1 * 2007)

The output of this function is a list of observation-schedule identifiers, listed one per line.
For this assignment, you may assume that reservations beyond 2008-12-31 23:59:59 may

be safely ignored. For patterns that specify reservations both before and after this date, only
the reservations after the date may be ignored; the earlier ones must be managed properly.
This assumption may simplify your implementation of invocations such as the following:

addOScheduleX(Alice, t101xy, 0 * 15 1 * *)

matchObservations(p, l, o): Here p is a time-pattern as described above, while l is a
floating-point number. This function finds all scheduled observations for observer (person)
o in the time interval [i, i + l], where i is any instant of time that matches the pattern p and
l is interpreted as a time duration, in hours. The output consists of the identifiers of the
matching scheduled-observations, one per line.

? getReqdObs(p, l): This function finds individual trees that are in need of observations
in the interval specified by time-pattern p and duration l, interpreted as in matchObservations.
We say an individual tree t needs an observation in an interval I if there is at least one time
instant i ∈ I such that there is no scheduled observation of t in the interval [i−M, i], where
M denotes the time duration of one month. The output of this function is a list of records,
one per line, indicating the identifier of a matching individual and the earliest instant of
time i satisfying the condition described above.

Packaging and Submission: You should generate a gzip-compressed tar archive file
called M -hw02-N.tgz, replacing M with your last-name and replacing N with an arbitrary
4-digit integer (e.g., Doe-hw01-4242.tgz). The execution of the following sequence of com-
mands on Gandalf (replacing Doe-hw02-4242.tgz with the name of your file, which resides
in /tmp) should result in the creation of a directory /tmp/Doe-hw02:

cd /tmp; gzip -dc Doe-hw02-4242.tgz | tar xf -

Typing make at the Unix shell prompt in the /tmp/Doe-hw02 directory should result in the
complete compilation of your program, producing an executable file called treedb. You
will need to include an appropriate Makefile for this procedure to work. You should also
include a short README file describing the files in your submission, along with anything that
may be helpful in fixing your submission if it does not work as above. You must make sure
you program works when stdin and stdout are redirected. For example, we may run your
program as follows, where datafile is a text file contains the input of the program: treedb
< datafile. Please check carefully that your file satisfies these requirements. Submit the
file using anonymous FTP as described in the previous assignment.

7


