This exam is a take-home, open-book, open-notes exam. You are free to use not only your
notes and the textbook, but also supplementary material in the form of books, papers, and
documents on the Web. However, all work must be done individually and all used resources
must be prominently acknowledged in your submission. If you are unsure if something is
allowed, please check with me.

Two very important criteria in evaluating your submission are clarity and rigor. A
technically correct answer that is poorly written or that uses dubious reasoning will earn
very few points, if any, so please pay particular attention to these criteria.

You may submit your exam in either handwritten or typeset form. However, if you chose
to type your submission, please make sure all mathematical notation is properly typeset. A
neat handwritten submission is much better than a poorly typeset one. You may submit
your hardcopy to Ellen in NV 237, noting the time of submission on the submission itself.
For electronic submission, use the procedure outlined in the homework assignments.

1. (1 pt.) Write your name on your submission.

2. (4 pts.) Explain the difference, if any, between the terms sort and type as used by the
textbook.

3. (5 pts.) Prove or disprove: Conjunctive queries are monotonic and satisfiable over
finite domains.

4. (10 pts.) Prove or disprove: The running time of the improved seminaive algorithm
is no greater than that of the basic seminaive algorithm.1 Assume that the principal
determinant of the running time is the number of facts generated by rule evaluations,
including repeated generation of the same fact by one or many rules.

5. (10 pts.) Provide a detailed example of a Datalog program and a database instance
for which the improved seminaive algorithm performs at least an order of magnitude
less work than does the basic seminaive algorithm. Provide the detailed traces of both
algorithms on the input example, showing all steps. Describe how your example may
be generalized to inputs of arbitrary sizes.

6. (10 pts.) Provide either (a) a bound on the ratio of the running times of the basic and
improved seminaive algorithms (on the same input) or (b) a method that, given an
arbitrary number \(N \), computes an input for which this ratio is greater than \(N \). The
term input refers to a Datalog program and a database instance on which the program
is evaluated using the two methods. The bound may be expressed using any reasonable
characterization of the input.

1Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of Databases (Addison-Wesley,
7. (10 pts.) In the reverse same generation example, the order of the subgoals in the body of the rule for rsg^b was altered from that in the rule for rsg^f. Demonstrate the impact of this change by providing a detailed trace of the QSQR algorithm on both versions of the adorned rules on the sample instance I_0 used by the example.

8. (20 pts.) Provide the details of an algorithm that takes a nr-Datalog program (non-recursive Datalog with negation and a single output IDB ans) as input and produces an equivalent named algebra query as output. Describe your algorithm using pseudocode at a level of detail that would permit a typical Computer Science junior to easily implement the algorithm. Explain why the algorithm is correct and state, and prove, its time and space complexity.

9. (10 pts.) Consider a query language L that is identical to the SPJR algebra except that L does not permit unary singleton constants. Describe the expressive power of L as precisely as possible (and justify your answer).

10. (20 pts.) Consider a relation $SvcLoc(station, milemark)$ that describes the locations of service stations along a long interstate highway. A tuple (s, m) in this relation indicates that the station with name s (a string) is located near mile-marker m (a floating-point number) on this highway. Consider another relation $Stops(id, milemark)$ that similarly describes the locations of planned stops along this highway. A tuple (i, m) in this relation indicates that a stop, identified by i (a string), is planned near mile-marker m.

(a) Write a standard SQL query to produce a relation $StopSvc(id, station)$ that pairs each stop with the nearest service station. That is, this relation contains a tuple (i, s) for each stop identifier i in $Stops$ such that s is the name of the service station nearest stop i, based on distance along the highway, computed using the mile-markers.

(b) Characterize the performance of the above query using any reasonable characterization of the input (such as the cardinalities of the input relations, the distributions of mile-marker values, the presence of any indexes, and the plan chosen by the query optimizer).

(c) Provide brief experimental support for your claims by conducting simple experiments using the PostgreSQL system.

2 Idem, p. 320.
3 Idem, p. 312.