
COS 226 Fall 2007 HW03 (100 + 20 ⋆ pts.) Due 2007-10-16 2:00 p.m.
c© 2007 Sudarshan S. Chawathe

Name:

Please submit this homework by following the homework submission instructions on the
class Web site. Reminder: You are welcome, and encouraged, to use any resources (e.g.,
Web sites) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain how and why
it works. Refer to the class policy for details, and ask for clarifications if you are unsure if
something is allowed. Questions marked with ⋆ are optional and may be answered for extra
credit.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package and submit your solutions to the programming questions as in previous
assignments. After uploading your jar file to the FTP server, complete the following:
File name: Size, in bytes:

3. (5 pts.) A priority queue is a data structure that efficiently implements three opera-
tions:1

• insert, which adds an element to the queue;
• findMin, which returns the smallest element in the queue; and
• deleteMin, which returns the smallest element in the queue and removes it from

the queue.

Describe an algorithm for sorting a list of elements efficiently by using a priority queue
as the primary data structure. Suppose we have a priority queue implementation in
which the insert, findMin, and deleteMin operations require time ti(q), tf(q), and td(q),
respectively, where q is the number of elements in the queue. Quantify the running
time of your sorting algorithm on an input of n elements as accurately as possible.

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006),
Section 6.9, p. 239.

1

4. (3 pts.) Explain how one may use a priority queue as the primary data structure to
implement (1) a stack and (2) a FIFO (first-in, first-out) queue.2

5. Read pages 746–758 and 761–764 (Section 6.5) of the textbook and answer the following
questions:

(a) (5 pts.) The textbook’s description of binary heaps3 uses a dummy first item in
the first array location. Using this scheme to store n nodes of a binary heap in

2Idem, Section 6.6.1, p. 225; Section 6.6.3, p. 227.
3Idem, p. 747.

2

an array A yields

parent(A[i]) = A[⌊i/2⌋]

left child(A[i]) =

{

A[2i] if 2i ≤ n
⊥ otherwise

right child(A[i]) =

{

A[2i + 1] if 2i + 1 ≤ n
⊥ otherwise

for i ∈ [1, n], where ⊥ denotes null. Provide similar expressions for parent, left-
child, and right-child when no dummy item is used.

(b) (5 pts.) The textbook’s method for implementing the deleteMin operation perco-
lates a hole from a node to its child with the smaller key.4 Would the heap-order
property be satisfied if the child with the larger key were chosen instead? If so,
explain why. If not, provide a counterexample.

4Idem, p. 754.

3

(c) (5 pts.) Explain, as precisely as possible, how the behavior of the textbook’s
PriorityQueue class5 changes if the types of the formal parameters of the con-
structors on lines 11 and 13 are changed to Comparator<AnyType> and
Collection<AnyType>, respectively.

(d) (5 pts.) The implementation of buildHeap and its accompanying description6

suggest that the highest-numbered (by array index) nonleaf node is at position
currentSize/2. Prove this claim.

5Idem, Figure 21.4, p. 750.
6Idem, p. 754.

4

6. (10 pts.) ⋆ Describe an algorithm for generating random trees (rooted, labeled, un-
ordered) on a given set of nodes. The input is a positive integer n. The output is a
random tree with n nodes labeled 1, 2, . . . , n. An important requirement is that the al-
gorithm be unbiased: If T (n) denotes the set of distinct trees on the n nodes 1, 2, . . . , n
and t is an arbitrary tree in T (n), then the probability that the algorithm produces t
as the output must be 1/|T (n)|. Justify the correctness of your algorithm and quantify
its running time.

5

6

7. (20 pts.) Using the standard java.util.PriorityQueue class, implement the algo-
rithm you describe for Question 3 by providing a Java class PQSorter that implements
the following interface:

public interface Sorter {
/**

@param d the data to be sorted, as a list of Integers

@return a new list containing the elements of d in sorted order.

*/

public List<Integer> sort(List<Integer> d);

}

8. (40 pts.) Implement the percDown method used by the textbook’s heapsort implemen-
tation7 and and provide a Java class HeapSorter that implements the Sorter interface
of Question 7.

9. (10 pts.) Study the performance of your two implementations of the Sorter interface
by measuring the running times of their sort methods. You may use various test
cases but, at a minimum, you should measure running times for inputs of varying
sizes (10 . . . 106 elements) and varying orders (randomly ordered, sorted, and sorted
in reverse order). Refer to the documentation of System.currentTimeMillis for a
simple method to measure running times.

Summarize your results in tabular form in the README file of your submission. The
file should also describe the exact steps that should be followed to reproduce these
results using your submitted code.

10. (10 pts.) ⋆ Implement the algorithm you provide for Question 6 and submit your
code with the rest of your assignment as usual. Perform experiments to quantify the
running time of your implementation, varying any parameters used by your algorithm
and implementation over as wide a range as possible. Also perform experiments to test
your algorithm for bias in the output. As above, summarize your results in tabular
form in the README file of your submission. The file should also describe the exact
steps that should be followed to reproduce these results using your submitted code.

7Idem, pp. 763–764.

7

