
COS 226 Fall 2007 HW06 (100 + 40⋆ pts.) Due 2007-11-29 2:00 p.m.
c© 2007 Sudarshan S. Chawathe

Name:

Please submit this homework by following the homework submission instructions on the
class Web site. Reminder: You are welcome, and encouraged, to use any resources (e.g.,
Web sites) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain how and why
it works. Refer to the class policy for details, and ask for clarifications if you are unsure if
something is allowed. Questions marked with ⋆ are optional and may be answered for extra
credit.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package and submit your solutions to the programming questions as in previous
assignments. After uploading your jar file to the FTP server, complete the following:
File name: Size, in bytes:

3. (8 pts.) Consider a directed acyclic graph G = (V, E) and a pair of vertices u, v ∈ V

such that u is reachable from v. We use M(u, v) to denote the set of all vertices w such
that w 6= v, w is reachable from v, and u is reachable from w. Note that, unless u = v,
M(u, v) contains at least one vertex, u, since w = u is permitted. The relationships
between u, v, and w are illustrated below, where the dashed lines represent directed
paths.

v

u

w w 6= v

Refer to the definition of the graphs Bn in Question 6a of Homework 5. For each vertex
v of of the graphs B1, B2, and B3, compute M(v∅, v), where v∅ denotes the vertex
representing the empty set. Write each value of M(v∅, v) next to the corresponding
vertex in your depiction of the graphs B1, B2, and B3.

1

4. (10 pts.) Consider a directed acyclic graph G = (V, E) and a pair of vertices u, v ∈ V

such that u is reachable from v. We define a function µ(u, v) recursively as follows,
using the definition of M(u, v) from Question 3:

µ(u, v) =

1 if u = v

−
∑

w∈M(u,v)

µ(u, w) otherwise

For each vertex v of of the graphs B1, B2, and B3, compute µ(v∅, v), where v∅ de-
notes the vertex representing the empty set. Write each value of µ(v∅, v) next to the
corresponding vertex in your depiction of the graphs B1, B2, and B3 of Question 3.

2

5. (20 pts.) For this programming question, and those that follow, use the usual packaging
and submission procedure from earlier assignments. Provide a class MyGraph that
implements the interface GraphExercises of Figure 1, as described further in this and
the following questions.

We use the Vertex, Edge, and Graph classes from the textbook (along with related
classes) as outlined in Figures 14.6–14.8 of the textbook. You may modify the text-
book’s versions of the Vertex, Edge, and Graph classes if you wish, as long as the
semantics of the existing methods are unchanged. In fact, an efficient implementation
of some of the following requires some such modifications. In your README file,

clearly describe the changes, if any, you make to these classes.

(a) Write a method numVertices that returns the number of vertices in the graph
given as argument.

(b) Write a method allVertices that returns a set containing all vertices in the
graph given as argument.

(c) Write a method numEdges that returns the number of edges in a graph given as
argument.

(d) Write a method allEdges that returns a set containing all edges in the graph
given as argument.

6. (20 pts.) Refer to the interface GraphExercises of Figure 1.

(a) Write a method createBn that, given a positive integer n, creates the graph Bn

of Question 6 of Homework 5, returning the resulting Graph object. The name

of a vertex in the returned graph must be the string obtained by concatenating
(in ascending order) the elements of the subset of [n] represented by the vertex.
Recall that the textbook’s implementation of the Vertex class associates a string
name with each vertex. For example, the name of a vertex that represents the set
{3, 7, 5} must be the string 357.

(b) Write a method inducedSubgraph that returns a new graph that is the subgraph
of the graph given as first argument induced by the set of vertices given as the
second argument. (Recall the definition of an induced subgraph from Question 6g
of Homework 5.)

(c) Write a method randomVertices that returns a set of vertices of the graph given
as first argument. The number of vertices in the set is provided as the second
argument. The returned vertices should be selected uniformly randomly from the
vertices of the given graph.

7. (20 pts.) Refer to the interface GraphExercises of Figure 1.

(a) Write a method reachableVertices whose arguments are a graph and a vertex
in that graph. It returns the set R(v) of vertices reachable from the given vertex

3

v by traversing zero or more edges (in the forward direction only). Note that the
input vertex v is always included in the set R(v).

(b) Write a method tweenVertices corresponding to the function M defined in Ques-
tion 3. That is, tweenVertices(g,u,v) returns the set of vertices M(u, v) in the
given graph g.

(c) Write a method mu corresponding to the function µ defined in Question 4. That
is, mu(g,u,v) returns the integer µ(u, v) in the given graph g.

(d) Write a method nameAsInt that returns the integer obtained by interpreting a
vertex’s name (a string as defined in Question 6a) as an integer. For example, if a
vertex has name 357 (a string), the result of this method is the integer 357. Note
that this function is not one-to-one; for example, both {1, 22, 3} and {13, 22} are
mapped to 1322.

8. (20 pts.) Refer to the interface GraphExercises of Figure 1.

(a) Given a graph G = (V, E) and an integer function f : V → Z defined on G’s
vertices, we define the outward aggregation of f as the function g : V → Z where

g(v) =
∑

x∈R(v)

f(x)

and R(v) is the set of vertices reachable from v, as defined in Question 7a. Write
a method outwardAggrOfNameAsInt that returns g(v) where f is the function
nameAsInt of Question 7d.

(b) Given a graph G = (V, E) and an integer function f : V → Z defined on G’s
vertices, we define the outward aggregation with µ of f as the function h : V → Z

where
h(v) =

∑

x∈R(v)

f(x)µ(x, v)

and R(v) is the set of vertices reachable from v, as defined in Question 7a. (The
definition differs from that in Question 8a only in the µ(x, v) factor.) Write a
method outwardAggrMuOfNameAsInt that returns h(v) where f is the function
nameAsInt of Question 7d.

(c) Write a method sampleRun that takes a positive integer as input and prints, to
standard output, one line for each vertex in the graph Bn (Question 6 of Homework
5). The line for vertex v should contain the following fields, separated by single
tab characters:

(1) a string representation of the set represented by v (see below),
(2) the name of v (Question 6a),
(3) the value of outwardAggrOfNameAsInt(v),
(4) the value of outwardAggrMuOfNameAsInt(v), and

4

(5) the value of hg(v), where the definition of hg(v) is similar to that of h(v) in
Question 8b, but with the function f replaced with the function
outwardAggrOfNameAsInt.

The string representation of a set of integers S = {s1, s2, . . . , sk} is the string {ti,
t2, . . ., tk } where the ti are the si sorted in ascending order. For example, the
set {5, 1, 7, 2} is represented by the string “{1, 2, 5, 7}” (there is a single space
after each comma).

9. (5 pts.) ⋆ Refer to the interface GraphExercises of Figure 1. Implement a method
sampleRun2 whose output is similar to that of method sampleRun of Question 8c, but
instead of using the graph Bn, use a random induced subgraph of Bn. In more detail,
given parameters n and m, this method should create the graph Bn, produce a random
subset S of m vertices of this graph, and the subgraph Bn|S of Bn induced by S. The
method should then print to standard output information similar to that outlined for
Question 9, but using the graph Bn|S instead of Bn.

10. (5 pts.) ⋆ Recall the definition of the outward aggregation of a function from Ques-
tion 8a. Write a method outwardAggrOfF that is similar to outwardAggrOfNameAsInt

from that question, except that the function f (used by the definition in that question)
is not fixed but is provided only when the method is invoked. Determine the appro-
priate method signature for outwardAggrOfF to permit such parametrization of f and
implement the method. Hint: Consider functors.1 Provide a driver program and a few
test cases for your method (using various functions f). Include your implementation
with the rest of your submission and indicate, in your README file, how this method
is tested.

11. (10 pts.) ⋆ What pattern, if any, emerges in the output of Questions 8c and 9? Describe
the pattern as precisely as possible. Make a claim based on this pattern. Provide
experimental evidence (beyond that from the earlier questions) in support of this claim.
Prove your claim formally.

12. (20 pts.) ⋆ For additional extra credit, you may submit your solution to the extra-
credit Question 9 of Homework 4. Include all files necessary to compile and test your
solution to this question along with the rest of your work for this homework. Be sure
to include the relevant details in the README file.

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006),
Section 4.8.

5

/**

We use the class Graph (and related classes) from the textbook.

*/

5 public class GraphExercises {

/**

@param g a non-null graph (may be empty).

@return the number of vertices in g.

10 */

public static int numVertices(Graph g);

/**

@param g a non-null graph (may be empty).

15 @return a set containing all vertices in g.

*/

public static Set<Vertex> allVertices(Graph g);

/**

20 @param g a non-null graph (may be empty).

@return the number of edges in g.

*/

public static int numEdges(Graph g);

25 /**

@param g a non-null graph (may be empty).

@return a set containing all edges in g.

*/

public static Set<Edge> allEdges(Graph g);

30

/**

@param n a positive integer.

@return A new graph Bn whose vertices are all subsets of the

set {1, 2, ..., n} and whose edges are vertices (u,v) such that

35 v is a maximal proper subset of u (i.e., there is no proper

subset w of u that is a proper superset of u).

*/

public static Graph createBn(int n);

40 /**

@param g a non-null graph.

@param v a set of vertices of g.

@return a new graph that is the subgraph of g induced by the

vertices in v.

45 */

public static Graph inducedSubgraph(Graph g, Set<Vertex> v);

Figure 1: GraphExercises.java

6

/**

@param g a non-null graph.

50 @param n a nonnegative integer no greater than the number of

vertices in g.

@return a set of n vertices of g, chosen uniformly randomly.

*/

public static Set<Vertex> randomVertices(Graph g, int n);

55

/**

@param g a non-null graph.

@param v a vertex in g.

@return a set containing the vertices in g that are reachable

60 from v by traversing zero or more edges (in the forward

direction only).

*/

public static Set<Vertex> reachableVertices(Graph g, Vertex v);

65 /**

@param g a non-null graph.

@param u a vertex in g.

@param v another vertex in g, may be the same as u.

@return the set of vertices w, not equal to v, that are

70 reachable from v and from which u is reachable.

*/

public static Set<Vertex> tweenVertices(Graph g, Vertex u, Vertex v);

/**

75 parameters as in tweenVertices.

See the recursive function mu defined in the text.

*/

public static int mu(Graph g, Vertex u, Vertex v);

80 /**

@param v a graph vertex.

@return the integer interpretation of v’s name.

*/

public static int nameAsInt(Vertex v);

85

/**

@param g a non-null graph.

@param v a vertex in g.

@return the outward aggregation of the nameAsInt function (as

90 defined in the text), evaluated at v.

*/

public static int outwardAggrOfNameAsInt(Graph g, Vertex v);

Figure 1: GraphExercises.java (contd.)

7

/**

95 @param g a non-null graph.

@param v a vertex in g.

@return the outward aggregation with mu of the nameAsInt function (as

defined in the text), evaluated at v.

*/

100 public static int outwardAggrMuOfNameAsInt(Graph g, Vertex v);

/**

@param n the number of vertices in the graph Bn

Exercise some of the above methods for the graph Bn; see text.

105 */

public static void sampleRun(int n);

/**

@param n the number of vertices in the graph Bn

110 @param m the number of vertices in the induced subgraph.

Exercise some of the above methods for a random induced

subgraph of the graph Bn; see text.

*/

public static void sampleRun2(int n, int m);

115 }

Figure 1: GraphExercises.java (contd.)

8

