
COS 480/580 Fall 2007 HW02 (200 pts.) Due 2007-10-30 12:30
c© Sudarshan S. Chawathe 2007

This programming assignment should be submitted electronically by following the instruc-
tions on page 7. You are welcome, and encouraged, to use any resources, such as Web sites,
to help you with your work. However, all such help must be clearly noted in your submissions.
Further, no matter what you use, you must be able to explain how and why it works.

For this homework, functions marked with ⋆ are required for COS 580 students only.
The main programming task described below is worth 200 points. For COS 480 students,
any points earned on ⋆ functions (potentially another 50 points) are simply added to the
score. If the resulting score is greater than 200, the remaining points are extra credit. COS
580 students must implement all functions to yield a raw score (maximum 250) that will be
scaled by 4/5 to obtain the score (maximum 200) on the homework. (COS 580 students who
wish to work for extra credit should contact me for a suitable assignment.)

Goal: This assignment asks you to build a small database application for managing in-
formation related to ferns and observations. The main goal of this assignment is to gain
experience using one or more application programming interfaces (APIs) to PostgreSQL. Sec-
ondary goals include practice in writing SQL queries and a study of the impact of database
design on ease of querying and updating data, and on maintaining database consistency.
This homework should provide a concrete motivation for these topics.

The Programming Environment: An important part of this assignment is learning the
interface between a typical programming environment and the database system. You are free
to use a programming language and database interface library of your choice. However, only
C (with embedded or dynamic SQL) and Java (with JDBC) are supported. While we will
try to help you with other languages and libraries, you should not assume any particulars
without first checking with me. Figuring out the details of the database system interface
and the necessary libraries usually takes people a lot longer than they expect, so please start
working on at least this part early.

Database Tables: The application uses the database tables Ferns, Habitats, and FruitDates

from the previous assignment, with the following changes:

1. The Ferns table should include a column named notes that holds textual descriptions
of ferns, such as the following description for the Ostrich Fern:1 “Fronds two to eight
feet high, growing in a crown; broadly lanceolate, pinnate, the numerous pinnae deeply
pinnatifid, narrowed toward the channeled stipe. Fertile fronds shorter, pinnate with
margins of the pinn revolute into a necklace form containing the sori.”

1George Henry Tilton, The Fern Lover’s Companion: A Guide for the Northeastern States and Canada

(Project Gutenberg, http://www.gutenberg.org/ebooks/11365, 2004).

1



2. The name column in both Habitats and FruitDates tables should each be replaced
by columns genus and species that hold the corresponding data for each fern, instead
of its common name.

We also use the following additional tables:

1. Places(name, directions, habitat). A row (n, d, h) in this table indicates that
the location with name n has habitat h, with d being textual directions to that lo-
cation. Each location is identified by a unique name, but may have multiple habitat
designations and, similarly, multiple directions.

2. Individuals(id, genus, species, location, height, fruit, odate). Each row
in this table represents an individual fern, with the columns representing, in order, an
attribute that uniquely identifies the individual, the genus and species of the individ-
ual, the name of its location (as in the name attribute in Places), its height in inches,
an indicator if it was fruiting (boolean), and the date of the observation. Although
each individual has a unique id attribute, there are, in general, multiple observations
per individual.

3. OSchedule(id, obs, indid, odatetime). Each row in this table represents a sched-
uled observation, with the columns representing, in order, a unique identifier for the
scheduled observation, the name of the observer (person), the individual fern to be
observed (identified using the id attribute of Individuals), and the date and time of
the scheduled observation.

Choose appropriate types for the columns of these tables. Unless otherwise specified, you
may assume that all string-valued attributes contain at most 100 characters. Exceptions
are the notes attribute of Ferns and the directions attribute of Places, which may each
contain up to 100,000 characters.

The Application Program: As described further in the packaging instructions below,
your submission should produce (not contain) an executable file called ferndb, that uses
PostgreSQL to implement the application described below. You must implement your appli-
cation program as a Unix command-line program that reads from standard input and writes
to standard output. Your program will be tested and graded on Gandalf. If you use some
other machine for development, please check very carefully that your code runs on Gandalf.
This application must implement the user functions described below. When the work (both
internal processing and output to user) for each function is done, your application should
write (to standard output) five dashes (-----) followed by a single newline character. We
will refer to this string of five dashes followed by a newline as the function termination
string. The following description also refers to a separator string, which consists of the
three-character sequence space-colon-space. We will assume that the separator string is not
a substring of any valid string input to this application. Except the output described in this
homework, your program should not produce any extra output, such as diagnostic messages.

2



These functions will be invoked from standard input by listing the function name followed
by its arguments, one per line. For example, the connect function described below takes two
arguments and may be invoked as follows:

connect

bigmoose

xyzzy

String arguments will be listed verbatim, with no quotes or other demarcation. You may
assume that function arguments do not contain any newline characters. Integers will be
listed in conventional format (e.g., 123, 74). You may assume that all numbers are in the
range [0 . . . 105]. Date-time values are in UTC, with the format YYYY-MM-DD HH:MM:SS. For
example, 2007-10-31 23:01:06 denotes six seconds past 11:01 p.m. on the 31st of October,
2007, UTC.

The input will contain, in general, several function calls in the above format, listed one
after the other. Your program should ignore lines with # (pound sign) as the first character.
It should also ignore blank lines, but blank lines separating function invocations are not

required. Since you know the number of arguments each function takes, there is no need for
such separation. (Note that the function termination string is used only for output, not in
the input.) Your application should read and process the functions in the order in which
they appear in the input and should terminate gracefully (e.g., by closing open database
connections) when the end of input is reached. There is no special end-of-input marker. You
are encouraged, but not required, to provide any error-handling features; your program will
only be tested on valid input.

Functions: The functions that your program should implement are described below. Note
that the descriptions use a conventional functional notation of the form f(a, b), but the input
is presented in the form described above.

connect(u, p): This function will be the first one invoked in any test run, and it will
be invoked exactly once per run. In response, your application should perform all necessary
initialization and connect to the database server as user u with password p. Strictly speaking,
your program need not perform any of these actions, since its observable behavior for this
function does not depend on them. However, it is probably a good idea.

We will test your program using a temporary account u that is not your class account.
You may assume that the database for account u initially contains no user tables. Make sure
you do not assume anything specific to your own class account. For example, you cannot
rely on any initialization you have in your .login or .bashrc files, since these files will
not be the same for the test account. Please be sure to understand the implications of this
requirement. Creating code that can be easily run by someone else is an important part of
this homework. For testing, you should use your own account name and password in place
of u and p. You may wish to test your submission by temporarily replacing your customized
account files, if any, with the default ones that came with your account.

3



createTables(): This function should result in the creation of all the database tables
required by this application. This function will be called before any of the functions below.
It does not return any results.

destroyTables(): This function should cause the removal of the database tables created
by createTables. After destroyTables, the database should be in its initial pristine
state (with no user tables). You may assume that after this function is called, a call to
createTable will precede a call to any of the functions described below. This function does
not return any results.

addFern(n,g,s,l,u,d): When this function is invoked, your application should add a row
(n, g, s, l, u, d) to the Ferns table, where n, g, s, l, u, and d denote, respectively, the common
name, genus, species, lower and upper limits of the height range, and notes on the fern. This
function does not return any results.

findFern(s): This function should search for ferns for which s occurs as a substring of one
or more of the common name, genus, and species. This search, and all searches on string-
valued attributes, should be case-insensitive unless specified otherwise. The matching
records should be printed one per line. Each line should contain the common name, genus,
and species, separated using the separator string described earlier (page 2). The output
should be sorted in ascending lexicographic order of the common name (case insensitive).
Output lines here and elsewhere should be terminated by a single newline character.

describeFern(n): This function should print descriptive information about all ferns (there
may be several, or none) with common name n. If there is no match no output should be
produced and this condition is not an error. For every matching fern record, the following
information should be printed on a single line (in this order): common name, genus, species,
lower range of its height, upper range of its height, and notes.

For this and other functions, attribute values and other items printed on an output line
should be separated using the separator string described earlier (page 2). Strings should be
printed literally (with no quotes, padding, or other artifacts). Integers and dates should be
printed in the format used for the input.

addPlace(n,d,h): When this function is invoked, your application should add a row (n, d, h)
to the Places table, where n, d, and h, denote, respectively, the name, directions, and habitat
of the place. This function does not return any results.

describePlace(j): This function should print descriptive information about the place with
name n (exact, case-sensitive string match). The output is the set of matching (n, h, d)
tuples, where h and d denote habitat and directions. (There may be multiple matches or no
matches; these conditions are not errors.)

4



addIndividual(n,l,h,f ,d): When this function is invoked, your application should add
a row (or rows, as noted below) (i, g, s, l, h, f, d) to the Individuals table, where i is an
identifier generated by your program to uniquely identify the individual; g and s (genus and
species) are the botanical name corresponding to the common name n; and l, h, f , and d are
values for the location, height, fruit, and odate columns. Botanical names (g and s values
above) corresponding to given common names should be determined using the Ferns table.
If there is no fern in that table with the required common name, the genus and species fields
of the newly inserted row in Individuals should be null. If there are multiple matches,
there should be one row for each (genus, species) pair matching the common name (with
the same identifier value i). The output of this function is the identifier i. (See the note on
identifiers below.)

addOSchedule(o,i,d): When this function is invoked, your application should add a row
(l, o, i, d) to the OSchedule table, where l is an identifier generated by your program to
uniquely identify this scheduled observation, and o, i, and d denote values for the remaining
columns of the OSchedule table in the order they were introduced earlier. The output of
this function is the identifier l.

addOSchedulePlace(o,p,d): This function is similar to addOSchedule, except that in-
stead of adding a scheduled-observation record for a single individual (fern), it adds a set of
records, one for each individual known to be located at the given place p (a place name).
That is, the net effect is as though addOSchedule(o,i,d) were invoked for each individual i
that is located at p. If there are no individuals at the given location, nothing is inserted; this
condition is not an error. The output of this function is the set of identifiers of the newly
inserted observation-schedule records (one per line).

describeIndividual(k): This function is to the Individuals table what describePlace
is to the Places table, with the individual identifier i replacing the place name. The output,
if any, consists of the values of the columns of the Individuals table, in the order they were
introduced earlier.

describeSchedule(i): This function is to the OSchedule table what describeIndividual
is to the Individuals table. The output, if any, consists of the values of the columns of the
OSchedule table, in the order they were introduced earlier.

Note on Identifiers: Every identifier generated by your program in response to an invoca-
tion of the addIndividual, addOSchedule, or addOSchedulePlace functions must uniquely
identify an individual or scheduled-observation. Your application is responsible for gener-
ating and managing these identifiers. Once your application has exposed an individual’s
identifier (by printing it as output), the identifier may be presented as an argument of the
describeIndividual function at any point in the future. These identifiers must persist be-
tween sessions. For example, if your program exposes a tree identifier xyzzy182 during one

5



session then a describeIndividual function call in a subsequent session with xyzzy182 as
the argument must produce details of the corresponding individual. All matching for iden-
tifiers should be exact. (If you use strings as identifiers, the match should be case-sensitive,
exact string match, for example.) There are similar constraints on identifiers of scheduled
observations.

addOScheduleX(o,i,p): This function is similar to addOSchedule, differing only in how
the time (and date) of the scheduled observation is specified. Instead of it being specified
explicitly, it is specified using a time-pattern p as described below. An noted below, a single
invocation of this function may result in the creation of several scheduled observations,
unlike the addOSchedule function, which always creates one scheduled observation. The
other arguments, o and i, are treated as in addOSchedule. Recall that all times are in UTC.

The scheduled observation times are based on interpreting the time-pattern p as a
crontab2 expression. The expression p consists of five fields (minute, hour, day of month,
month, and day of week) separated by whitespace. The following excerpt (slightly modified)
from the crontab manual describes the semantics.

[A timestamp matches p] when the minute, hour, and month of year fields match
the current time, and when at least one of the two day fields (day of month, or
day of week) match the current time. The time and date fields are:

field allowed values
minute 0–59
hour 0–23

day of month 1–31
month 1–12 or names

day of week 0–7 (0 and 7 mean Sun.)
[year integer year of the common era ]

A field may be an asterisk (*), which always stands for “first–last.”

Ranges of numbers are allowed. Ranges are two numbers separated with a hy-
phen. The specified range is inclusive. For example, 8-11 for an “hours” entry
specifies [a reservation] at hours 8, 9, 10 and 11. [Similarly, 2007-2009 specifies
a reservation for years 2007, 2008, and 2009. We will assume a temporal granu-
larity of one minute. Thus the time-pattern * * 1 1 * 2008 specifies the time
points marking each minute of each hour of January 1st, 2008 (a total of 60× 60
points in time.]

Lists are allowed. A list is a set of numbers (or ranges) separated by commas.
Examples: “1,2,5,9”; “0-4,8-12.”

2Paul Vixie, crontab—tables for driving cron, Manual, 4th Berkeley Distribution, 1994.

6



Step values can be used in conjunction with ranges. Following a range with
“/<number>” specifies skips of the number’s value through the range. For exam-
ple, “0-23/2” can be used in the hours field to specify command execution every
other hour (the alternative in the V7 standard is “0,2,4,6,8,10,12,14,16,18,
20,22”). Steps are also permitted after an asterisk, so if you want to say “every
two hours,” just use “*/2.”

Names can also be used for the “month” and “day of week” fields. Use the first
three letters of the particular day or month (case doesn’t matter). Ranges or
lists of names are not allowed.

A single invocation of addOScheduleX results in the creation of several scheduled observations
(several entries in the OSchedule table). We will refer to this group of scheduled observations
created by a addOScheduleX invocation as a observation group. For example, the following
invocation results in 24 scheduled observations for January 15th, 2008 for the first 10 minutes
of each hour of that day:

addOScheduleX(Alice, t101ab, 0 * 15 1 * 2008)

The output of this function is a list of observation-schedule identifiers, listed one per line.
For this assignment, you may assume that reservations beyond 2010-12-31 23:59:59 may

be safely ignored. For patterns that specify reservations both before and after this date, only
the reservations after the date may be ignored; the earlier ones must be managed properly.
This assumption may simplify your implementation of invocations such as the following:

addOScheduleX(Alice, t101xy, 0 * 15 1 * *)

matchObservations(p, l, o): Here p is a time-pattern as described above, while l is a
floating-point number. This function finds all scheduled observations for observer (person)
o in the time interval [i, i + l], where i is any instant of time that matches the pattern p and
l is interpreted as a time duration, in hours. The output consists of the identifiers of the
matching scheduled-observations, one per line.

⋆ getReqdObs(p, l): This function finds individual ferns that are in need of observations
in the interval specified by time-pattern p and duration l, interpreted as in matchObservations.
We say an individual f needs an observation in an interval I if there is at least one time
instant i ∈ I such that there is no scheduled observation of f in the interval [i−M, i], where
M denotes the time duration of one month. The output of this function is a list of records,
one per line, indicating the identifier of a matching individual and the earliest instant of
time i satisfying the condition described above.

Packaging and Submission: You should follow the packaging and submission procedure
suggested by the previous assignment, replacing hw01 with hw02 as appropriate. Unpack-
ing your submission should create a directory M -hw02 (as a subdirectory of the working

7



directory), where M is your last name. Typing make at the Unix shell prompt in this di-
rectory should result in the complete compilation of your program, producing an executable
file called ferndb. You will need to include an appropriate Makefile for this procedure to
work. You should also include a short README file describing the files in your submission,
along with anything that may be helpful in fixing your submission if it does not work as
above. You must make sure you program works when stdin and stdout are redirected. For
example, we may run your program as follows, where datafile is a text file contains the
input of the program: treedb < datafile. Please check carefully that your file satisfies
these requirements. Proper packaging is an important part of this assignment.

8


