
Capstone Project Proposals∗

Suggestions for deeper explorations

Sudarshan S. Chawathe

This brief guide describes a few key components of
good project proposals. It is not a recipe; rather, it is
meant to trigger deeper exploration of some of the im-
portant questions a project proposal should answer.
It is designed to help with the task of developing a
nascent idea for a project into a well rounded project
proposal. While it is possible to organize the project
proposal based on these questions, it is likely that an
alternate organization is more convenient for most
work.

It is useful to think of the project proposal as
providing answers to the following about the project:

1. What is the project all about? What problem
does it solve? What are the goals? What is the
focus and the overall strategy?
These questions are what many would consider
the main description of the project.

For example, we may propose a project to
design, build, and evaluate a general-purpose
sorting library. The simple problem description
in this case is quite standard. However, we
must indicate why there is a need for another
sorting library and how we hope it will be better
than what already exists. For instance, we may
decide to focus on an optimized implementation
for embedded systems and similar environments.
In such environments we must cope with limita-
tions such as low CPU speed, strong memory
constraints, and the need to release resources on
demand, for extended periods. Alternatively, we
may decide to focus on sorting data resident on a
complex storage architecture, composed of local
disks, network-attached storage (local) and data
resident on remote servers.

2. Why is it interesting? Why is it fun?
While a project that strongly appeals to one
person may seem humdrum to another, it is
nevertheless possible to explain the aspects of a
project that make it interesting to the proposer.

Continuing our sorting example, we may indi-
cate some features of the work that make it
interesting: Sorting has widespread applications,

∗A Guide for Computer Science Majors at the University

of Maine, Spring 2008. chaw@cs.umaine.edu.

from sorting data in user interfaces to low-
level operations in the internals of database
systems. There is a rich body of work on
sorting, which provides a nice foundation and
is interesting to learn; at the same time, there
are many unanswered questions, both theoretical
and practical. If we choose the embedded-
systems option, the possibility of using our work
as part of an application that runs on cell phones
and other similar devices may also be interesting.
In these environments, many of the performance
assumptions we may be accustomed to making
may no longer hold, making the task of adapting
existing sorting methods more challenging and
interesting. Further, the relative simplicity of
the problem makes it amenable to a satisfying,
thorough analysis that may not be practicable
for more complex problems and systems.

3. How will we know when the work is completed?
What are the main tasks and dependencies?
This question, and its ramifications, is perhaps
the most important one, and one that is of-
ten overlooked. It is tempting to answer this
question by “when it all works” but defining
exactly what must work, and how well, is very
important. It is useful to think of the proposed
work as composed of a core task along with a
few additional ones. The core task should be
one that we are very confident of finishing well
before the deadlines. The additional ones are
those we hope to complete, assuming we do not
face too many unexpected problems. It is very
important to define all these tasks very carefully,
keeping implementation dependencies and other
constraints in mind. It is also useful to then
subdivide each of these tasks, especially the core
task, into smaller units that better allow us to
budget our time and effort, and monitor our
progress.

In our sorting example, we may define a core
task based on sorting data in a J2ME envi-
ronment supporting MIDP 2.0 and CLDC 1.1,
with at least 512 KiB of heap space. For
this definition to be meaningful, we must add
many more details. (Certainly it is not much

1



of a challenge simple to implement a sorting
algorithm that works in this environment.) For
instance, we may require the implementation
to compare favorably with a naive porting of
standard implementations to this environment.
Further, this core task (and others, typically)
may include experimental evaluation and other
analysis task.

4. How will the work be evaluated?
A project may be evaluated along several dimen-
sions, and the following list is not exhaustive.
Not all of these may be applicable to a given
project project, and they may be of varying im-
portance, depending on the goals of the project.

(a) Performance. CPU time, memory footprint
and bandwidth, disk footprint and band-
width, network usage, energy requirements,
and so on.

In our sorting example, it is natural to
study the CPU, memory, and disk use. If
the focus is on network-based storage, the
network bandwidth and latency are also
important factors.

(b) Generality. How large is the class of ap-
plications and environments in which the
results are applicable? It is often possible
to achieve high performance at the cost of
lower generality.

For instance, the use of a radix-based sort-
ing may provide improved performance in
our running example, but the resulting sort-
ing program may then be inapplicable to
data that must be sorted using an arbitrary,
user specified, comparison function.

(c) Simplicity. How easy is it to explain and
implement the method? How easy is it to
use? Does it require extensive tuning of
parameters?

A sorting implementation that requires the
user to specify various parameters, such
as cut-over thresholds from quicksort to
insertion sort, is less desirable than one that
requires only the data and the comparison
function.

(d) Extensibility. How easy is it for us, and
others, to extend the method, and imple-
mentation?

For example, a sorting implementation that
provides the necessary guidance and hooks

to ease implementation on different hard-
ware is preferable to one whose build-in
assumptions and design make this task
difficult.

We can certainly think of other dimensions by
which to evaluate the work. The important point
is to determine and document these at a very
early stage.

5. How does it relate to prior work? An insuffi-
cient investigation related work typically leads
to disastrous results. A substantial portion of
the time and energy spent on a project must be
budgeted for investigation of related work. Such
work falls into a many different categories, such
as the following:

(a) Competition: methods and implementa-
tions with goals very similar to ours.

In the sorting example, this category in-
cludes other implementations of sorting on
environments similar to the one we study.

(b) Applications: techniques, implementations,
and end-user applications that are likely to
use the results of our work.

Our sorting implementation may be useful,
for instance, to database system implemen-
tations or user interfaces

(c) Components: the tools and methods used
by our work.

For example, our network-data sorting im-
plementation may use a prior implemen-
tation of main-memory sorting for small
datasets as a module.

(d) Ideas from other areas: non-obvious con-
nections often exist between diverse areas.

For example, we may find use for some
graph-coloring methods in the design of
parallel sorting algorithms.

While it may be very difficult to answer the above
questions, and address the issues they raise, to our
complete satisfaction early in the Capstone project
experience, it is important to have at least reasonable
answers to them, along with indications on how these
answers are likely to be refined down the road. It
is important that they be discussed with all parties
involved in the project, especially the project adviser.

2


