
Notes on Engineering a Sort Function∗

Sudarshan S. Chawathe

These notes, in the guise of questions, are meant
to be read in conjunction with

Jon L. Bentley and M. Douglas McIlroy.
Engineering a sort function. Software–

Practice and Experience, 23(11):1249–1265,
November 1993.

1. Give an example of a stable sorting method
and explain why it is stable. Give an example
of a non-stable sorting method, other than the
method in this paper, and explain why it is not
stable.

2. Justify the following claim made by the authors
on page 1250, just below the iisort listing:
“Insertion sort uses about n2/4 comparisons on
a randomly permuted array, and it never uses
more than n2/2 comparisons.”

3. Refer to Program 1 on page 1251. What is the
range of values of the parameter n for which the
swap function behaves correctly?

4. On page 1251, just below Program 1, why are
the strings required to be null-terminated even
though they are all len bytes long?

5. Justify the following claim about Program 2,
made near the bottom of page 1251: “On arrays
that are already sorted, it makes roughly n2/2
comparisons.”

6. Prove the correctness of iqsort0 on page 1252.
[Hint: Introduce and prove some key invariants,
and show that the invariants imply correctness.]

7. The description of the method to partition an
array using two indices (middle of page 1252)
notes that it is important that both indices stop
on elements equal to the pivot, else the running
time is quadratic for an input array composed of
a random distribution of zeros and ones. Justify
this claim.

∗Class notes for the Computer Science Capstone course at

the University of Maine, Spring 2008, for 3rd-year undergrad-

uate students. chaw@cs.umaine.edu.

8. Generate a table analogous to Table I (page
1254) for a programming environment of your
choice. The programming environment consists
of the hardware, operating system, program-
ming language, compiler or interpreter, and any
associated libraries. Describe the environment
and the method used to generate your table in
detail sufficient to enable others to reproduce
your results. Comment on how well your results
are suited to an analysis of the kind found in the
paper.

9. Justify the claim (bottom of page 1254) that par-
titioning about a random element takes roughly
1.386 lg n comparisons.

10. Justify the claim (page 1255, just below Program
5) that Program 5 finds the median of three
elements using 8/3 comparisons on average.

11. Does the code near the bottom of page 1255 work
properly when n is not divisible by 2? (Note
the use of integer division on the first and sixth
lines.) Explain your answer using a suitable
example.

12. Near the bottom of page 1255 is the com-
ment “We could get fancier and randomize the
sample,” followed by “but a library sort has
no business side-effecting the random number
generator.” Explain both quoted comments.
What is the benefit of randomizing the sample?
Why is the stated side effect undesirable? Is
there a way to use randomization without this
side effect?

13. The paper notes that the Seventh Edition qsort

finishes after a single scan when given an input of
equal elements (top of page 1257). Use a suitable
example to explain this behavior.

14. Provide a formal definition of the Dutch National
Flag problem mentioned on page 1257.

15. Describe the precise invariants suggested by the
second, third, and fourth diagrams on page 1257,

1



and explain the resulting solutions to the Dutch
National Flag problem using suitable examples.

16. On page 1258 is the comment “The disorder
induced by swapping the partition element to the
beginning is costly when the input is ordered in
reverse or near-reverse.” Justify this comment
and explain your answer using a suitable exam-
ple.

17. Item 4 at the top of page 1259 notes “We guard
recursive calls to Quicksort on n elements with
the test if (n > 1).” What is the motivation
for this modification?

18. Prove that “by sorting the larger side of the
partition last and eliminating tail recursion, we
could reduce worst-case stack growth from linear
in n to logarithmic” (middle of page 1259).

19. Provide a modified version of the qsort function
(Program 7) that incorporates the suggestion of
Question 18.

20. Refer to the five observations on “well known
roads to optimization that we have not traveled”
(near the bottom of page 1259). Comment on
their applicability to the environment used for
Question 8.

21. Provide a method that, given a positive integer
n as input, produces as output an array A(n) of
n integers such that the running time of qsort

(Program 7) with input A(n) (and the usual
comparison function for integers) is quadratic in
n. [Hint: See the footnote on page 1261.]

22. Write a variant of Program 7 by using the
suggestions near the bottom of page 1262.

23. Comment on how the “lessons that apply well
beyond sorting” (page 1263) apply to your recent
or ongoing work, such as your Capstone project.

24. Generate a table analogous to Table IV (page
1264) for two or more current architectures.
Describe how your results may be reproduced.

25. The poor performance of char-wise swapping
on the MIPS R3000 architecture is attributed
to cache interference (bottom of page 1262).
Expand on this explanation and comment on
how it applies to current architectures.

26. Explain how the definition of the SWAPINIT

macro (page 1264) sets swaptype to the correct
value, as defined in the text preceding the macro
definition.

2


