
COS 226 Fall 2008 HW02 200 + 40⋆ pts.; 14 pages. Due 2008-09-30 2:05 p.m.

c© 2008 Sudarshan S. Chawathe

Name:

Please follow the submission procedure used for the previous assignment. Reminder: You are
welcome to use any inanimate resources (e.g., books, Web sites, publicly available code) to
help you with your work. However, all such help must be clearly noted in your submissions.
Further, no matter what you use, you must be able to explain, in detail, how it works. (You
may be called upon to explain your homework in person.) Refer to the class policy for
details, and ask for clarifications if you are unsure if something is allowed. Questions marked
with a ⋆ are optional but you are encouraged to answer them for extra credit.

Important: Make sure you follow the packaging and submission procedure carefully. Include
a README file with information on the rest of the files in your submission, and instructions
on how to test your work. Also include a Makefile that enables the make program to compile
your source. Your submission must contain only source code. Test unpacking, compiling,
and running your packaged files on gandalf prior to your final submission.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package and submit your solutions to the programming questions. After up-
loading your jar file to the FTP server, complete the following:
File name: Size, in bytes:

3. (13 pts.) In class, we defined the function iot as

iot(t) =

{

iot(l) · (n) · iot(r) if t = (n, l, r)
() otherwise

where () denotes the empty sequence, (n) denotes the sequence with a single element
n, and · is the concatenation operator on sequences.

(a) Trace the evaluation of iot(t0) where t0 is the tree defined in Question 8 of Home-
work 1. Clearly indicate the arguments and result of each invocation of the iot
function.

(b) Prove that this function results in an inorder traversal1 of a binary tree. In
particular, prove that if t is a binary search tree then iot(t) is the sequence of the
keys of t in sorted order.

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006),
§18.4, p. 611.

1

[additional space for answering the earlier question]

2

[additional space for answering the earlier question]

3

4. (15 pts.) Provide suitable recursive definitions of functions preord(t) and postord(t)
corresponding to the preorder and postorder traversals of a binary tree t, using a
notation similar to that in Question 3. Prove that each function produces a sequence
of the keys in t in the appropriate order.

4

[additional space for answering the earlier question]

5

5. (30 pts.) A rooted, ordered, labeled tree is a rooted, labeled tree (as defined in the
textbook2) in which there is a well defined order on the children of each node. For
example, the tree depicted in Figure 18.1 may be interpreted as a rooted, ordered,
labeled tree by imposing a left-to-right order on the children of each node. Thus, D is
the third child of A, and G is the second child of B.

We may represent such trees in a two-dimensional plain-text for-
mat by using indentation to suggest parent-child relationships.
For example, the tree of Figure 18.1 in the textbook may be rep-
resented as indicated on the right where, for clarity, we use the
 symbol to denote a single space character. In more detail, the
two-dimensional text representation of a tree t contains one line
for each node of t. The line representing a node n ∈ t consists
of n’s label prefixed with 3d spaces, where d is the depth of n
in t. Further, all the lines representing descendants of a node
precede the line representing that node’s right sibling, if any. In
our example, all nodes in B’s subtree are represented before B’s
right sibling C.

A

 B

 F

 G

 C

 D

 H

 E

 I

 J

 K

(a) Provide a precise and compact recursive definition of a function tdtr that maps
trees to their two-dimensional text representations, using the definition of iot in
Question 3 as a guide. You may use the operator ◦ for text concatenation and
the symbols and ←֓ to represent the space and newline characters. [Hint: Use
an auxiliary function a(d, s) that is invoked on subtrees s of the input tree t, with
d equal to the depth the root of subtree s in the tree t; initially, tdtr(t) = a(0, t).]

(b) Characterize, as precisely as possible, the running time of a direct implementation
of your recursive definition, as a function of the size of the input tree.

(c) Trace the evaluation of tdtr(t1) using a direct implementation of your recursive
definition, where t1 is the tree from Figure 18.1 in the textbook. For each recursive
function invocation, indicate the function arguments and result.

2Idem, p. 596.

6

[additional space for answering the earlier question]

7

[additional space for answering the earlier question]

8

6. (40 pts.) We define a simple digital trie3 to be a nonempty rooted labeled tree4 in
which each non-root node is labeled with a single digit (0, . . . , 9), and in which no
two siblings have identical labels. The root r has an empty label. We associate a trie
node n(z) with every non-negative integer z as follows: If z < 10 then n(z) has label
z and parent r. Otherwise n(z) has label z mod 10 and parent n(⌊z/10⌋). A marked

simple digital trie is a simple digital trie in which each node may be associated with an
optional mark (separate from its label). A marked simple digital trie is said to contain

a key (non-negative integer) z if it contains a marked node n(z) (and the other nodes
implied by the recursive definition of n(z), either marked or unmarked). A marked
simple digital trie is said to represent a set K of keys if it contains exactly the keys in
K (i.e., all the keys in K and no others).

(a) Depict a marked simple digital trie that represents the following set of keys, using
the usual graphical notation for labeled trees, and using the character * to adorn
marked nodes: {1, 3, 343, 2939, 48902, 22, 983001, 344, 35, 129}.

(b) Describe simple algorithms for the following, by providing pseudocode or very
precise English descriptions.

i. to determine whether a marked simple digital trie T contains a key k.

ii. to remove a key k from a marked simple digital trie T . [Hint: Check that the
algorithm removes only k.]

(c) Characterize, as precisely as possible, the running time of the algorithms you
describe for Question 6b as a function of the inputs T and k.

(d) Prove or disprove: If T1 and T2 are two marked simple digital tries representing
a set K of keys, then T1 is isomorphic to T2.

3usually pronounced “try,” although some prefer “tree.”
4Weiss, op. cit., p. 596.

9

[additional space for answering the earlier question]

10

[additional space for answering the earlier question]

11

7. (20 pts.) ⋆ Provide a suitable recursive definition of a function levelord(t) corresponding
to the level-order traversal5 of a binary tree t, using a notation similar to that in
Question 3. Prove that your function produces a sequence of the keys in t in the level
order.

5Idem, §18.4.4, p. 622.

12

8. (100 pts.) Implement a simple record manager using the marked simple digital trie of
Question 6, as detailed below. The record manager stores key-data pairs of the form
(k, d) where k is a non-negative integer and d is floating point number. (You may
assume that k and d fit in Java’s int and float types.) All user interaction with the
record manager is through a text-mode command language based on the standard-
input/standard-output interface. The input consists of one command per line. The
record manager reads and responds to each command in turn. Except for the xp

command, the response to each command is also a single newline-terminated line. The
syntax and semantics of the commands, and the desired outputs, are as follows. As
before, we use the symbol to denote a single space character. The commands xs, xh,
xa, and xb use the definitions in the Tree interface of Question 11 in Homework 1.

command actions
s k d The pair (k, d) is stored in the record manager. If a

pair of the form (k, d′) already exists, then the new pair
replaces it. The output is an empty line (single newline
character).

e k If the record manager contains the key k then the output
is 1 else the output is 0.

r k The data d associated with key k is retrieved from the
record manager. The output is d. If the key k is absent
from the record store, the output consists of an empty
line.

xs The output is the size of the trie (a single integer).
xh The output is the height of the trie.
xa The output is a list of the labels of the trie nodes in pre-

order, with labels of marked nodes suffixed with a single
* character. These labels (some with suffixes) are to be
printed on a single line, with a single space separating
adjacent entries, with no additional punctuation such as
commas or brackets.

xb The output is similar to that of xa but the nodes are to
be listed in postorder.

xp The output consists of the two-dimensional text repre-
sentation (Question 5) of the current state of the marked
simple digital trie used to store the records, with the la-
bels of marked nodes suffixed with a single * character.

Ensure that (1) your program produces exactly the output described above, with no
spurious text such as extra spaces or newlines, prompts, or other messages and (2) your
program reads from standard input and writes to standard output, with no additional
assumptions on either.

13

9. (20 pts) ⋆ A shortened digital trie is similar to a simple digital trie but nodes that have
no siblings are merged into their parents, with a concatenation of labels. That is, if a
node n1 with label d1 has a single child n2 with label d2, then n2 is merged into n1,
and the label of n1 is changed to d1 · d2.

(a) Provide an appropriate definition for a marked shortened digital trie, by analogy
with the marked simple digital trie.

(b) Repeat Question 6, replacing “simple digital trie” with “shortened digital trie”
throughout.

(c) Repeat Question 8 using shortened digital tries instead of simple digital tries.
Submit your implementation with the rest of your work, noting all necessary
details in your README file.

14

