
COS 226 Fall 2008 HW03 200 pts.; 10 questions; 18 pages. Due 2008-10-30 2:05 p.m.

c© 2008 Sudarshan S. Chawathe

Name:

Please refer to the previous assignments for important instructions on the allowable use of
resources and the requirements for electronic submission.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package your solutions to the programming questions as in previous assign-
ments. Submit your work via http://cs.umaine.edu/~chaw/u/. After submitting
your work, complete the following:
File name: Size, in bytes:
MD5 checksum:
Timestamp:

3. (10 pts.) The textbook describes a simple method for detecting duplicates in an input
array.1 Modify that method, as little as possible, to count the number of occurrences
of each array element. The modified method should return an integer array b that
has the same size as the input array a, with b[i] being the number of occurrences of
a[i] in the array a. For example, given a = (3, 1, 4, 1, 5, 3, 1, 2), the desired result is
b = (2, 3, 1, 3, 1, 2, 3, 1).

Present the modified method as Java code, or as pseudocode at a similar level of detail.
Describe its asymptotic running time as a function of the size of the input array.

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006),
Figure 8.1, p. 305.

1



[additional space for answering the earlier question]

2



4. (25 pts.) Read the Sun Java 6 documentation2 of the method Collections.sort and
answer the following briefly:

(a) Describe, as precisely as possible, how the usability of the method would change
if we were to modify the signature

public static <T extends Comparable<? super T>>

void sort(List<T> list)

by replacing <? super T> with <T>.

(b) Why does the documentation also include the following?

public static <T> void sort(List<T> list,

Comparator<? super T> c)

Provide a concrete example of a situation in which the variant of Question 4a
(unmodified) cannot be easily used but this one can.

2http://java.sun.com/javase/reference/.

3



(c) Which sorting algorithm does Collections.sort use, and what performance
guarantee does it offer?

(d) What does it mean for a sorting method to be stable? Is Collections.sort

stable?

(e) Does the implementation sort the input list in place? Why?

4



(f) The documentation refers to a task that requires n2 log n time. What is it? Ex-
plicitly describe a method for that task and prove that the running time of your
method is Θ(n2 log n).

5



5. (8 pts.) Describe an alternate method for computing the number of occurrences of each
array element, as described in Question 3, based on sorting the input. You may use
the Java library method Collections.sort. As in Question 3, present your method
as Java code or detailed pseudocode, and describe its asymptotic running time.

6



6. (30 pts.) Consider a function boosort defined on lists as follows, where min(l) returns
the minimum value in l and where · denotes list concatenation.

boosort(l) =

{

l if l = ()
(min(l)) · boo(l) otherwise

(a) If boosort is to live up to its name and return the elements of its input l in sorted
order, how must the function boo be defined? Define boo by providing Java code
or detailed pseudocode. Explain why your definition results in boosort having the
desired property. [Hint: Be sure to properly handle duplicates in l.]

7



(b) Trace the evaluation of boosort on the list (19, 87, 52, 76, 17, 35, 20, 1, 91, 5). For
each recursive invocation boosort(x), clearly indicate the argument x, the result
of boo(x), and the result of boosort(x).

8



(c) Is boosort, with your definition of boo, stable? Justify your answer.

(d) Describe the asymptotic running time of boosort as a function of the number of
elements in the input list.

9



(e) Provide Java code or detailed pseudocode for a nonrecursive variant of boosort,
say noosort, that is otherwise very similar to boosort.

10



(f) Trace the evaluation of your definition of noosort from Question 6e on the input
list of Question 6b. Depict the states of the main data structures used by your
method (array, list, etc.) at each iteration, in a manner similar to that used by
the textbook to trace insertion sort.3

3Weiss, op. cit., Figure 8.3, p. 306.

11



(g) Is noosort stable? Explain your answer.

12



7. (25 pts.) Refer to the description of the marked simple digital trie in the previous
assignment.

(a) Define a traversal on marked simple digital tries that visits the marked nodes
in ascending order of the keys they represent. You may use formal notation
(say, similar to what we have used for other traversals) or plain English for your
definition. In either case, the description must be precise enough to enable others
to implement the traversal.

13



(b) Provide Java code, or detailed pseudocode, for the traversal of Question 7a.

14



(c) Devise an algorithm, digitriesort, to sort a collection of nonnegative integers us-
ing a marked simple digital trie and the traversal of Question 7a. Ensure that
your method works correctly when there are duplicates in the input. You may
use pseudocode or plain English to describe your algorithm. In either case, the
description must be precise enough to enable others to implement the algorithm.

15



(d) Provide Java code, or detailed pseudocode, for the method of Question 7c.

16



(e) Characterize, as precisely as possible, the running time of your method for Ques-
tion 7c as a function of the number and length of the integers in the input.

17



8. (20 pts.) Implement the methods you describe for Questions 3 and 5. Your imple-
mentation should read the elements of the input array a from standard input (one
element per line). The array b should be computed using the each of the two methods,
and your implementation must check that the result is identical. The output of your
implementation should be the elements of b, one per line, followed by the running
times for computing b using each method (in milliseconds, also one per line). For this
question, and all that follow, make sure the README file in your submission includes
the appropriate instructions for testing your work.

9. (40 pts.) Implement boosort and noosort from Question 6. Your implementations
should be completely interchangeable with the standard Java methods Collections.sort.
That is, replacing Collections.sort with boosort or noosort should not change
program behavior, except for possible performance differences. Write a program that
reads a nonnegative integer n from standard input, generates a list of n random integers,
sorts them using each of Collections.sort, boosort, and noosort, and writes to
standard output the time (in milliseconds, one per line) required for each of the three
sorting implementations. Your source code should make it obvious that your boosort
and noosort implementations are interchangeable with Collections.sort.

10. (40 pts.) Extend your implementation of Question 9 to include the digitriesort method
of Question 7 in addition to the three methods used earlier. The output should be
augmented with the running time of digitriesort in the natural way.

18


