1. List the members of your group below:
2. A subsequence of sequence S is any sequence that can be obtained from S by deleting zero or more of its elements. For example, $(1,4,9,2)$ is a subsequence of $S_{1}=$ $(3,1,4,5,9,2)$, but $(1,9,4)$ is not. A subsequence S^{\prime} of S is called a k-subsequence if each pair of adjacent elements in S^{\prime} has $k-1$ intermediate elements in S. For example, $(1,5,2)$ is a 2 -subsequence of S_{1}, and $(3,5)$ is a 3 -subsequence of S_{1}, but $(1,5,9)$ is not a k-subsequence of S_{1} for any value of k (although it is a subsequence of S_{1}). A k-subsequence with n elements is called maximal if there is no k-subsequence with $n+1$ elements. List all maximal 5 -subsequences and maximal 7-subsequences of the following sequence:

$$
\begin{array}{llllllllllllll}
50 & 40 & 60 & 70 & 65 & 75 & 62 & 63 & 41 & 42 & 51 & 52 & 53 & 54
\end{array}
$$

3. We say a sequence is k-sorted if all of its k -subsequences are sorted. For each of the following, provide an example of a sequence with the indicated properties, or explain why no such sequence exists.
(a) 7-sorted but not 5 -sorted.
(b) 5 -sorted but not 7 -sorted.
(c) 6 -sorted but not 3 -sorted.
(d) 3 -sorted but not 6 -sorted.
4. Sort the following array in ascending order using shellsort with increment sequence $(1,5,7) .{ }^{1}$ Depict the state of the array after each k-sort, for $k=1,5,7$ and highlight the moved elements at each stage.

[^0]5. Consider the process of sorting the array of Question 4 in ascending order using mergesort. ${ }^{2}$ Depict the recursive invocations of the mergeSort method using a tree in which nodes represent mergeSort invocations and are labeled with the indices of the subarrays sorted by them. Further, the parent of a node n is the node p corresponding to the mergeSort invocation (if any) from which n 's invocation is called.

[^1]6. Augment, or redraw, the tree of Question 5 by adding to each node's label the state of the sub-array corresponding to that node's invocation (1) immediately before the invocation and (2) immediately after the invocation.

[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006), §8.4.

[^1]: ${ }^{2}$ Idem, §8.5.

