```
COS 226 Fall 2009 Class Exercise 18 12 questions; 5 pgs. Due 2009-12-01 3:15 p.m.
(c)2009 Sudarshan S. Chawathe
```

1. List the members of your group below:
2. Let $P_{n}, n>0$, denote the set of permutations of the elements $[n]=\{1,2, \ldots, n\}$. That is, an element $p \in P_{n}$ is a sequence composed of the elements of $[n]$ in some order. For example, $(4,1,3,2) \in P_{4}$.

Enumerate P_{n} for $n=1,2,3,4$.
3. (Extra credit) Devise an efficient algorithm to generate all permutations of a given multiset of elements in lexicographic order.
4. For $p, q \in P_{n}$, we say p is a swap neighbor of q if swapping one pair of distinct elements in p yields q. List all swap neighbors of $(1,2,3)$, and of $(1,2,3,4)$.
5. Is the swap-neighbor relation symmetric?
6. How many swap neighbors does a permutation $p \in P_{n}$ have? Justify your answer.
7. Define a swap graph of n-permutations as an undirected graph $G_{s}(n)$ whose vertices are permutations of P_{n} and whose edges connect pairs of swap-neighboring permutations. Depict $G_{s}(n)$ for $n=0,1,2,3,4$.
8. For a permutation $p \in P_{n}$ and $1 \leq i \leq n$, we adopt the notation $p[i]$ for the i 'th element of p and $p^{-1}[j]$ for the index of the element j (so that $p\left[p^{-1}[j]\right]=j$). Let $1 \leq x \leq n$ be an element in permutation $p \in P_{n}$ such that $p^{-1}[x] \neq x$. Define the rotate home operation $S(p, x)$ as one that

- shifts elements $p[x], \ldots, p\left[p^{-1}[x]-1\right]$ to the left if $x>p^{-1}[x]$, and $p\left[p^{-1}[x]+\right.$ $1], \ldots, p[x]$ to the right otherwise; and
- sets $p[x] \leftarrow x$.

Evaluate $S((1,3,5,4,6,2), 2)$ and $S((5,1,4,2,3,6), 5)$.
9. Define a rotate-home graph of n-permutations as a directed graph $G_{r}(n)$ that has a vertex for each permutation of P_{n} and an edge from p to q if there is an element x such that $S(p, x)=q$. Depict $G_{r}(n)$ for $n=0,1,2,3,4$.
10. How many undirected cycles and directed cycles does $G_{r}(n)$ contain, for $n=0,1,2,3,4$?
11. Define a rotate leftmost home operation on a permutation $p \in P_{n}, p \neq(1,2, \ldots, n)$ as the operation $S_{l}(p)=S(p, x)$ where x is the leftmost element in p such that $p[x] \neq x$. Depict the sequence of permutations obtained by repeated application of the rotate leftmost home operation to the sequence $(2,3,4, \ldots, n, 1)$ for $n=2,3,4$.
12. Does the procedure outlined in Question 11 always terminate? Explain your answer.

