© 2009 Sudarshan S. Chawathe

- 1. List the members of your group below:
- 2. Let P_n , n > 0, denote the set of *permutations* of the elements $[n] = \{1, 2, ..., n\}$. That is, an element $p \in P_n$ is a sequence composed of the elements of [n] in some order. For example, $(4, 1, 3, 2) \in P_4$.

Enumerate P_n for n = 1, 2, 3, 4.

3. (Extra credit) Devise an efficient algorithm to generate all permutations of a given multiset of elements in lexicographic order.

4. For $p, q \in P_n$, we say p is a *swap neighbor* of q if swapping one pair of distinct elements in p yields q. List all swap neighbors of (1, 2, 3), and of (1, 2, 3, 4).

5. Is the swap-neighbor relation symmetric?

6. How many swap neighbors does a permutation $p \in P_n$ have? Justify your answer.

7. Define a swap graph of n-permutations as an undirected graph $G_s(n)$ whose vertices are permutations of P_n and whose edges connect pairs of swap-neighboring permutations. Depict $G_s(n)$ for n = 0, 1, 2, 3, 4.

- 8. For a permutation $p \in P_n$ and $1 \le i \le n$, we adopt the notation p[i] for the *i*'th element of p and $p^{-1}[j]$ for the index of the element j (so that $p[p^{-1}[j]] = j$). Let $1 \le x \le n$ be an element in permutation $p \in P_n$ such that $p^{-1}[x] \ne x$. Define the *rotate home* operation S(p, x) as one that
 - shifts elements $p[x], \ldots, p[p^{-1}[x] 1]$ to the left if $x > p^{-1}[x]$, and $p[p^{-1}[x] + 1], \ldots, p[x]$ to the right otherwise; and
 - sets $p[x] \leftarrow x$.

Evaluate S((1, 3, 5, 4, 6, 2), 2) and S((5, 1, 4, 2, 3, 6), 5).

9. Define a rotate-home graph of n-permutations as a directed graph $G_r(n)$ that has a vertex for each permutation of P_n and an edge from p to q if there is an element x such that S(p, x) = q. Depict $G_r(n)$ for n = 0, 1, 2, 3, 4.

10. How many undirected cycles and directed cycles does $G_r(n)$ contain, for n = 0, 1, 2, 3, 4?

11. Define a rotate leftmost home operation on a permutation $p \in P_n$, $p \neq (1, 2, ..., n)$ as the operation $S_l(p) = S(p, x)$ where x is the leftmost element in p such that $p[x] \neq x$. Depict the sequence of permutations obtained by repeated application of the rotate leftmost home operation to the sequence (2, 3, 4, ..., n, 1) for n = 2, 3, 4.

12. Does the procedure outlined in Question 11 always terminate? Explain your answer.