COS 226 Fall 2009 Midterm Exam $2 \quad 6$ questions; 6 pgs.; 60 pts.; 60 min. 2009-11-17
(c) 2009 sudarshan s. Chawathe

Name:

\qquad

1. (1 pt.) Write your name in the space provided above.
2. (11 pts.) Sort the following array in ascending order using insertion sort. ${ }^{1}$ Depict the state of the array after each insertion operation, underlining the prefix that is known to be in sorted order, and circling the inserted element, similar to what was done in the classroom exercises.

i:	0	1	2	3	4	5	6	7	8	9
$\mathrm{a}[\mathrm{i}]:$	40	32	33	97	12	84	9	92	37	25

[^0]3. (12 pts.) What is the total number of inversions 2 in the array of Question 2? Explain your answer briefly.
The array is repeated here for reference:
\[

$$
\begin{array}{rrrrrrrrrrr}
\text { i: } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{a}[\mathrm{i}]: & 40 & 32 & 33 & 97 & 12 & 84 & 9 & 92 & 37 & 25
\end{array}
$$
\]

[^1]4. (12 pts.) Using conventional graphical notation, depict the complete binary tree encoded by the array of Question 2, based on the textbook's method as used for heapsort. ${ }^{3}$ Mark the edges that violate the heap-order property (for max-heaps) by an X .

The array is repeated here for reference:

$$
\begin{array}{rrrrrrrrrrr}
\text { i: } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{a}[\mathrm{i}]: & 40 & 32 & 33 & 97 & 12 & 84 & 9 & 92 & 37 & 25
\end{array}
$$

[^2]5. (12 pts.) Heapify the tree of Question 4 using the buildHeap operation from the textbook. ${ }^{4}$ Depict intermediate states of the tree, including at least the states after buildHeap completes each level of the tree. Mark parent-child swaps by annotating the corresponding edges with an X .

[^3][additional space for answering the earlier question]
6. (12 pts.) Suppose the keys in the array of Question 2 are inserted, in the order $\mathrm{a}[0] \ldots \mathrm{a}[9]$, into a hash table $\mathrm{t}[0] \ldots \mathrm{t}[22]$, using the hash function $h(x)=$ $x \bmod 23$ and the quadratic probing for collision resolution. Depict the final state of the hash table t.

The array is repeated here for reference:

$$
\begin{array}{rrrrrrrrrrr}
\mathrm{i}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{a}[\mathrm{i}]: & 40 & 32 & 33 & 97 & 12 & 84 & 9 & 92 & 37 & 25
\end{array}
$$

[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 3rd edition (Addison-Wesley, 2006), §8.3.

[^1]: ${ }^{2}$ Idem, p. 307.

[^2]: ${ }^{3}$ Idem, §21.5.

[^3]: ${ }^{4}$ Idem, §21.3.

