This exercise covers some aspects of Johnson's paper on yacc ${ }^{1}$ along with some graph terminology, both of which are featured in the next homework.

1. List the members of your group below:
2. Earlier exercises have introduced several well-known graphs, such as K_{n} and C_{n}. Another such graph is a $m \times n$ grid graph (or lattice graph, or mesh graph) $G_{m, n}=(V, E)$ where $V=\{(x, y) \mid x \in 0,1,2, \ldots, m$ and $y \in 0,1,2, \ldots, n\}$ and $E=\{(p, q) \mid p, q \in$ V and $d(p, q)=1\}$, using $d(p, q)$ to denote the Euclidean distance between points p and q.

Depict $G_{m, n}$ for $0 \leq n \leq m \leq 5$.

[^0]3. Is it possible to generate $G_{m, n}$ (Question 2) using the graph calculator described in the homework assignment? If so, provide the calculator input that generates and prints the graph; else explain why not.
4. Determine the number of paths from the origin $(0,0)$ of a grid graph to the vertex (m, n) assuming all edges are oriented away from the origin. Justify your answer. Present the numerical answers for $0 \leq n \leq m \leq 5$.
5. Determine the number of paths from $(0,0)$ to (m, n), as in Question 4, but subject to the constraint that the paths are not permitted to visit any vertex (x, y) with $x<y$. Present the numerical answers for $0 \leq n \leq m \leq 5$. Comment on any observed similarities to previously studied sequences.
6. Recall the question from the midterm exam that asked for a trace of bit-splitting radix sort. Provide a bash script that generates the answer to that question given the data (in decimal) as input. The goal is to generate as concise a script as possible. You may use any of the standard Unix tools, such as grep, sed, awk, sort, etc. (Ask for clarifications about tool use.)

[^0]: ${ }^{1}$ Stephen C. Johnson, Yacc: Yet Another Compiler-Compiler, Unix Programmer's Manual, Volume 2b. AT\&T Bell Laboratories. Murray Hill, New Jersey, 1978.

