COS 397 Spring $2010 \underline{\text { Class Exercise } 8} 4$ questions; 4 pgs.	Due 2010-02-25 3:15 p.m.	
© 2010 Sudarshan s. Chawathe		

This exercise continues our exploration of graphs, with the powers and derivatives of graphs, and Hamiltonian circuits.

1. List the members of your group below:
2. The k th power of a graph $G=(V, E)$ is the graph $G^{k}=(V, F)$ where F contains precisely those pairs of vertices that are connected in G by a path of length at most k. Depict G^{k} for $k=1,2,3$ for each of the following choices for $G: K_{5}, K_{4,5}, P_{5}, C_{5}, W_{5}$, and S_{5}. (Recall the definitions from the homework.)
[additional space for answering the earlier question]
3. The derivative of a graph G is the graph $G^{\left({ }^{(}\right)}$obtained from G by removing all vertices of degree 1, along with the edges incident on them. (Recall that the degree of a vertex is the number of edges incident on it.)
Depict $G^{\left({ }^{\prime}\right)}$ for each of the following choices for G : $K_{5}, K_{4,5}, P_{5}, C_{5}, W_{5}$, and S_{5}.
4. A Hamiltonian circuit in a graph is a closed path that visits each vertex exactly once (not counting the return to the origin as a visit). A graph is called Hamiltonian if it admits a Hamiltonian circuit.

For each of the graphs of Questions 3 and 2, determine whether the graph is Hamiltonian. If so, exhibit a Hamiltonian circuit; otherwise, explain why no Hamiltonian circuit exists.

