COS 397 Spring 2010 Class Exercise 9 12 questions; 4 pgs. Due 2010-03-18 3:15 p.m.

(© 2010 Sudarshan S. Chawathe

This exercise continues our exploration of lez, yacc, C, and make, and their use in imple-
menting simple languages, such as the graph calculator of Homework 2.

1. List the members of your group below:

2. Describe some strange symptoms that may arise from the casual use of yytext as
a string in the C code fragments of a yacc grammar that uses lex for tokenization.

Provide a simple solution.

3. Provide a C code fragment illustrating a good use of assertions.



4. What does the following lex directive achieve? What is likely to occur if it is removed
from the lex file in which it is used?

Joption noyywrap nounput noinput

5. What is the default C type for terminals and nonterminals of a yacc grammar? How
may it be changed” How may we use different types for different nonterminals in yacc?

6. Provide a yacc code fragment that implements a string concatenation operator ‘+’ (e.g.,
alpha + beta should yield alphabeta).



7. What is a good way to allow lex and yacc to share the the integers used to identify
tokens without repetition in source files (which invites bugs due to inconsistent defi-
nitions)? How may we let yacc choose default values for some tokens while providing
specific values for others?

8. What is a shift-reduce conflict? Provide a simple example, with explanation, and
describe how to fix it.

9. What is an easy way to tell yacc that the * operator binds more tightly than the +
operator?



10. What is the default action associated with a yacc rule?

11. Provide a make rule that generates a PDF foo.pdf file from a PostScript file foo.ps
(for all values of foo).

12. Provide good test input for the graph calculator, and the expected output. Your input
should be designed to make it unlikely that an incorrect implementation produces the
correct output.



